Skip to main content
Log in

Two-Stage Simulation of Tensile Modulus of Carbon Nanotube (CNT)-Reinforced Nanocomposites After Percolation Onset Using the Ouali Approach

  • Nanomechanics of Low-dimensional Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We suggest a two-stage approach for simulation of the elastic tensile modulus of polymer–carbon nanotube (CNT) nanocomposites including CNT networks, considering the hardening and percolating characters of the interphase region. In the first stage of the calculation, the Ouali equation is used to estimate the modulus of hypothetical particles consisting of CNTs and the nearby interphase. In the second stage, the Ouali model is applied to determine the modulus of the nanocomposite using the polymer medium and simulated particles obtained from the first stage of the process. The predictions obtained using the model are tested against experimental results for various samples. Subsequently, the effects of each simulation factor on the nanocomposite modulus are discussed. The presented technique is verified by the good agreement between the experimental results and model calculations, together with the normal effects of the parameters on the nanocomposite modulus. The use of CNTs with radius (R) > 40 nm and an interphase with depth (t) < 10 nm results in a 180% improvement in the modulus of the nanocomposite, but the overall modulus is increased by 400% when using the minimum R value of 10 nm and the maximum t value of 25 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Farahi, G.D. Najafpour, and A. Ghoreyshi, JOM 71, 285 (2019).

    Google Scholar 

  2. Y. Zare and K.Y. Rhee, JOM 71, 3980 (2019).

    Google Scholar 

  3. A. Adegbenjo, P. Olubambi, J. Westraadt, M. Lesufi, and M. Mphahlele, JOM 71, 2262 (2019).

    Google Scholar 

  4. S. Bibi, T. Yasin, S. Hassan, M. Riaz, and M. Nawaz, Mater. Sci. Eng., C 46, 359 (2015).

    Google Scholar 

  5. S. Arora, M. Rekha, A. Gupta, and C. Srivastava, JOM 1, 2590–2595 (2018).

    Google Scholar 

  6. Y. Zare and K.Y. Rhee, Compos. B Eng. 175, 107132 (2019).

    Google Scholar 

  7. Y. Zare, K.Y. Rhee, and S.J. Park, J. Biomed. Mater. Res. A 107, 2706 (2019).

    Google Scholar 

  8. I. Otaegi, N. Aranburu, M. Iturrondobeitia, J. Ibarretxe, and G. Guerrica-Echevarría, Polymers 11, 2059 (2019).

    Google Scholar 

  9. C.-F. Wang, W.-N. Wang, C.-H. Lin, K.-J. Lee, C.-C. Hu, and J.-Y. Lai, Polymers 11, 1183 (2019).

    Google Scholar 

  10. J. Wang, C. Cao, X. Chen, S. Ren, Y. Chen, D. Yu, and X. Chen, Polymers 11, 154 (2019).

    Google Scholar 

  11. A.M. Okoro, S.S. Lephuthing, S.R. Oke, O.E. Falodun, M.A. Awotunde, and P.A. Olubambi, JOM 71, 567 (2019).

    Google Scholar 

  12. A. Rostami, M. Vahdati, Y. Alimoradi, M. Karimi, and H. Nazockdast, Polymers 134, 143 (2018).

    Google Scholar 

  13. A. Rostami, F. Eskandari, M. Masoomi, M. Nowrouzi, and J. Oil, Gas Petrochem. Tech. 6, 28 (2019).

    Google Scholar 

  14. M. Hasanzadeh, R. Ansari, and M. Hassanzadeh-Aghdam, Mech. Mater. 129, 63 (2019).

    Google Scholar 

  15. M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, R. Ansari, and H. Mehdipour, Mech. Mater. 131, 121 (2019).

    Google Scholar 

  16. X. Cao, H. Dong, C.M. Li, L.A. Lucia, and J. Appl, Polym. Sci. 113, 466 (2009).

    Google Scholar 

  17. A. Rostami, M. Vahdati, and H. Nazockdast, Polym. Compos. 39, 2356 (2018).

    Google Scholar 

  18. M. Peydayesh, T. Mohammadi, O. Bakhtiari, and J. Ind, Eng. Chem. 69, 127 (2019).

    Google Scholar 

  19. R. Razavi, Y. Zare, and K.Y. Rhee, Polym. Compos. 40, 801 (2019).

    Google Scholar 

  20. Y. Zare, K.Y. Rhee, and S.-J. Park, Res. Phys. 15, 102406 (2019).

    Google Scholar 

  21. V. Favier, H. Chanzy, and J. Cavaille, Macromolecules 28, 6365 (1995).

    Google Scholar 

  22. Y. Zare and K.Y. Rhee, RSC Adv. 8, 30986 (2018).

    Google Scholar 

  23. S. Chen, M. Sarafbidabad, Y. Zare, and K.Y. Rhee, RSC Adv. 8, 23825 (2018).

    Google Scholar 

  24. S. Shekhar, E. Sajitha, V. Prasad, and S. Subramanyam, J. Appl. Phys. 104, 083910 (2008).

    Google Scholar 

  25. S. Chandran, N. Begam, and J. Basu, J. Appl. Phys. 116, 222203 (2014).

    Google Scholar 

  26. M.G. Ahangari, A. Fereidoon, M. Jahanshahi, and N. Sharifi, Compos. B Eng. 56, 450 (2014).

    Google Scholar 

  27. Y. Zare, H. Garmabi, and K.Y. Rhee, Polym. Test. 66, 189 (2018).

    Google Scholar 

  28. Y. Zare and K.Y. Rhee, Polym. Compos. 40, 4135 (2019).

    Google Scholar 

  29. W. Peng, S. Rhim, Y. Zare, and K.Y. Rhee, Polym. Compos. 40, 1117 (2019).

    Google Scholar 

  30. M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, and R. Ansari, Compos. B Eng. 168, 274 (2019).

    Google Scholar 

  31. Y. Zare, K.Y. Rhee, and S.-J. Park, Res. Phys. 15, 102562 (2019).

    Google Scholar 

  32. Z. Zhou, M. Sarafbidabad, Y. Zare, and K.Y. Rhee, J. Mech. Behav. Biomed. Mater. 86, 368 (2018).

    Google Scholar 

  33. A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, and J. Marêché, Phys. Rev. B 53, 6209 (1996).

    Google Scholar 

  34. N. Ouali, J. Cavaillé, and J. Perez, Plast. Rubber Compos. Process. Appl. 16, 55 (1991).

    Google Scholar 

  35. Y. Zare and K.Y. Rhee, J. Colloid Interface Sci. 506, 283 (2017).

    Google Scholar 

  36. A.P. Chatterjee, J. Appl. Phys. 100, 054302 (2006).

    Google Scholar 

  37. X.L. Ji, K.J. Jiao, W. Jiang, and B.Z. Jiang, Polym. Eng. Sci. 42, 983 (2002).

    Google Scholar 

  38. Y. Zare and K.Y. Rhee, J Alloys Compd. 793, 1 (2019).

    Google Scholar 

  39. N. Zhang, S. Li, L. Xiong, Y. Hong, and Y. Chen, Model. Simul. Mater. Sci. Eng. 23, 085010 (2015).

    Google Scholar 

  40. N. Zhang, S. Yang, L. Xiong, Y. Hong, and Y. Chen, J. Mech. Behav. Biomed. Mater. 53, 200 (2016).

    Google Scholar 

  41. L. Xiong and Y. Chen, Comput. Model. Eng. Sci. 24, 203 (2008).

    Google Scholar 

  42. W. Shao, Q. Wang, F. Wang, and Y. Chen, Carbon 44, 2708 (2006).

    Google Scholar 

  43. J. Ji, G. Sui, Y. Yu, Y. Liu, Y. Lin, Z. Du, S. Ryu, and X. Yang, J. Phys. Chem. C 113, 4779 (2009).

    Google Scholar 

  44. G.-X. Chen, H.-S. Kim, B.H. Park, and J.-S. Yoon, Polymer 47, 4760 (2006).

    Google Scholar 

  45. Y. Zare and K.Y. Rhee, JOM 71, 3989 (2019).

    Google Scholar 

  46. Y. Zare and K.Y. Rhee, J. Phys. Chem. Solids 131, 15 (2019).

    Google Scholar 

  47. Y. Zare, K.Y. Rhee, and J. Mater, Res. Tech. 9, 22 (2020).

    Google Scholar 

  48. M. Zappalorto, M. Salviato, and M. Quaresimin, Compos. Sci. Tech. 72, 49 (2011).

    Google Scholar 

  49. S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, Compos. B Eng. 39, 933 (2008).

    Google Scholar 

  50. N. Jamalzadeh, S. Heidary, Y. Zare, and K.Y. Rhee, Polym. Test. 69, 1 (2018).

    Google Scholar 

  51. J.-M. Zhu, Y. Zare, and K.Y. Rhee, Colloids Surf. A Physicochem. Eng. Asp. 539, 29 (2018).

    Google Scholar 

  52. S.C. Baxter and C.T. Robinson, Compos. Sci. Tech. 71, 1273 (2011).

    Google Scholar 

  53. R. Qiao and L.C. Brinson, Compos. Sci. Tech. 69, 491 (2009).

    Google Scholar 

  54. A. Montazeri and R. Naghdabadi, J. Appl. Polym. Sci. 117, 361 (2010).

    Google Scholar 

  55. Y. Zare, J. Colloid Interface Sci. 471, 89 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong Yop Rhee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. Two-Stage Simulation of Tensile Modulus of Carbon Nanotube (CNT)-Reinforced Nanocomposites After Percolation Onset Using the Ouali Approach. JOM 72, 3943–3951 (2020). https://doi.org/10.1007/s11837-020-04223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04223-3

Navigation