Skip to main content
Log in

Additive and Subtractive Hybrid Manufacturing (ASHM) of 316L Stainless Steel: Single-Track Specimens, Microstructure, and Mechanical Properties

  • Characterization of Additive Manufactured Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present work investigates the influence of the laser power (P) and scanning speed (v) on the surface morphology and Vickers microhardness of single scan tracks formed by directed energy deposition (DED) to determine suitable parameter values for further in-depth investigation of additive and subtractive hybrid manufacturing (ASHM) of fabricated parts. The experimental results show that the depth and width of the melt pool depended significantly on both P and v. Furthermore, the anisotropic mechanical behavior of bulk 316L specimens fabricated by ASHM in the horizontal (H), edge (E), and vertical (V) directions relating to the build layers was also explored. The results show that the tensile strength of the specimens fabricated by ASHM in the H direction was higher than that of those built in the E or V direction, implying that the anisotropy originates from the unique thermal history of each component location owing to the layer-by-layer nature of the DED process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DED:

Directed energy deposition

ASHM:

Additive and subtractive hybrid manufacturing

AM:

Additive manufacturing

SM:

Subtractive manufacturing

FDM:

Fused deposition modelling

SLM:

Selective laser melting

316LSS:

316L stainless steel

LSCM:

Laser scanning confocal microscopy

SEM:

Field-emission scanning electron microscopy

WEDM:

Wire electrical discharge machining

UTS:

Ultimate tensile strength

YS:

Yield strength

ETF:

Elongation to fracture

H:

Horizontal

E:

Edge

V:

Vertical

Q v :

Powder feed rate

P :

Laser power

v :

Scanning speed

h :

Layer thickness

t :

Hatch spacing

D :

Laser beam spot size

f z :

Feed per tooth

V Z :

Milling linear speed

a p :

Amount of axis feed

a e :

Amount of radial feed

Ma:

Marangoni convection

\( \Delta T \) :

Temperature gradient

\( r_{\text{m}} \) :

Radius of the melt pool

\( \alpha \) :

Thermal diffusivity of the melt pool

\( T_{0} \) :

Room temperature

\( {\text{AR}} \) :

Absorption rate

\( k \) :

Heat transfer coefficient

\( d \) :

Penetration depth

T :

Operating temperature

\( T_{\text{m}} \) :

Melting point

\( \omega \) :

Surface tension

\( \mu \) :

Dynamic viscosity of the melt pool

m :

Atomic mass

\( k_{\text{b}} \) :

Boltzmann’s constant

References

  1. F. Weng, S.M. Gao, J.C. Jiang, J.J. Wang, and P. Guo, Addit. Manuf. 27, 474 (2019).

    Google Scholar 

  2. W. Woo, D.K. Kim, E.J. Kingston, V. Luzin, F. Salvemini, and M.R. Hill, Mater. Sci. Eng. A Struct. 744, 618 (2019).

    Article  Google Scholar 

  3. B.C. Salzbrenner, J.M. Rodelas, J.D. Madison, B.H. Jared, L.P. Swiler, Y.L. Shen, and B.L. Boyce, J. Mater. Process. Technol. 241, 1 (2017).

    Article  Google Scholar 

  4. T. Mukherjee, V. Manvatkar, A. De, and T. DebRoy, Scr. Mater. 127, 79 (2017).

    Article  Google Scholar 

  5. J.H. Yi, J.W. Kang, T.J. Wang, X. Wang, Y.Y. Hu, T. Feng, Y.L. Feng, and P.Y. Wu, J. Alloys Compd. 786, 481 (2019).

    Article  Google Scholar 

  6. L. Zhu, C. Ni, Z. Yang, and C. Liu, Precis. Eng. 57, 229 (2019).

    Article  Google Scholar 

  7. S.S. Qu, Y.D. Gong, Y.Y. Yang, X.L. Wen, and G.Q. Yin, Ceram. Int. 45, 3059 (2019).

    Article  Google Scholar 

  8. P.C. Priarone and G. Ingarao, J. Clean. Prod. 144, 57 (2017).

    Article  Google Scholar 

  9. J.K. Watson and K.M.B. Taminger, J. Clean. Prod. 176, 1316 (2018).

    Article  Google Scholar 

  10. W.C. Lee, C.C. Wei, and S.C. Chung, J. Mater. Process. Technol. 214, 2366 (2014).

    Article  Google Scholar 

  11. M. Praniewicz, T. Kurfess, and C. Saldana, J. Manuf. Sci. E-T ASME 141, 1 (2019).

    Article  Google Scholar 

  12. S. Zhang, Y.Z. Zhang, M. Gao, F.D. Wang, Q. Li, and X.Y. Zeng, Sci. Technol. Weld. JOI 24, 375 (2019).

    Article  Google Scholar 

  13. T. Mishurova, S. Cabeza, K. Artzt, J. Haubrich, M. Klaus, C. Genzel, G. Requena, and G. Bruno, Materials 27, 4 (2017).

    Google Scholar 

  14. P. Mercelis and J.P. Kruth, Rapid Prototyp. J. 15, 5 (2006).

    Google Scholar 

  15. S.M. Yusuf, Y.F. Chen, R.P. Boardman, and S.F. Yang, Metals 7, 64 (2017).

    Article  Google Scholar 

  16. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).

    Article  Google Scholar 

  17. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, J. Mater. Process. Technol. 249, 255 (2017).

    Article  Google Scholar 

  18. B. AlMangour, D. Grzesiak, and J.M. Yang, Powder Technol. 319, 37 (2017).

    Article  Google Scholar 

  19. W. Xiong, L. Hao, Y. Li, D.N. Tang, Q. Cui, Z.Y. Feng, and C.Z. Yan, Mater. Des. 170, 1 (2019).

    Article  Google Scholar 

  20. B.L. Yan and L.D. Zhu, Int. J. Adv. Manuf. Technol. 102, 431 (2019).

    Article  Google Scholar 

  21. X.H. Lu, Z.Y. Jia, X.X. Wang, Y.B. Liu, M.Y. Liu, Y.X. Feng, and S.Y. Liang, Measurement 145, 254 (2019).

    Article  Google Scholar 

  22. Y.Y. Yang, Y.D. Gong, S.S. Qu, Y.L. Rong, Y. Sun, and M. Cai, Int. J. Adv. Manuf. Technol. 97, 2687 (2018).

    Article  Google Scholar 

  23. A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A Struct. 644, 171 (2015).

    Article  Google Scholar 

  24. C.L. Qiu, N.J.E. Adkins, and M.M. Attallah, Acta Mater. 103, 382 (2016).

    Article  Google Scholar 

  25. I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, Addit. Manuf. 7, 45 (2015).

    Google Scholar 

  26. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, J. Mater. Process. Technol. 210, 1624 (2010).

    Article  Google Scholar 

  27. D.H. Dai and D.D. Gu, Appl. Surf. Sci. 355, 310 (2015).

    Article  Google Scholar 

  28. P. Wei, Z.Y. Wei, Z. Chen, J. Du, Y.Y. He, J.F. Li, and Y.T. Zhou, Appl. Surf. Sci. 408, 38 (2017).

    Article  Google Scholar 

  29. J.Y. Zhang, D.D. Gu, Y. Yang, H.M. Zhang, H.Y. Chen, D.H. Dai, and K.J. Lin, Engineering 5, 736 (2019).

    Article  Google Scholar 

  30. I. AlMangour, D. Grzesiak, T. Borkar, and J.M. Yang, Mater. Des. 138, 119 (2018).

    Article  Google Scholar 

  31. Z.Q. Wang, T.A. Palmer, and A.M. Beese, Acta Mater. 110, 226 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the National Natural Science Foundation of China (No. 51775100) and the Fundamental Research Funds for the Central Universities (No. N180306001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Gong, Y., Qu, S. et al. Additive and Subtractive Hybrid Manufacturing (ASHM) of 316L Stainless Steel: Single-Track Specimens, Microstructure, and Mechanical Properties. JOM 73, 759–769 (2021). https://doi.org/10.1007/s11837-020-04216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04216-2

Navigation