Skip to main content
Log in

Microstructural Characterization and Tensile Properties of Al-Mg-Fe-Ce Alloy at Room and Elevated Temperatures

  • Aluminum and Magnesium: New Alloys and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cerium is a promising alloying element that may improve the mechanical properties of aluminum-based alloys. However, the effect of Ce on the microstructural and mechanical behavior of complex-alloyed aluminum-based alloys has not been studied well. In this work, we have analyzed the effect of Ce and Fe co-addition on the phase structure, grain structure, and tensile characteristics of the Al-Mg alloy at ambient and elevated temperatures. X-ray and microstructural studies involving scanning electron and transmission electron microscopy methods have been used in order to identify the phase composition of the Al-Mg-Fe-Ce alloy. Two Ce-bearing constituent phases have been identified and their morphology has been analyzed. Uniaxial tensile test experiments were used to study the mechanical characteristics of the samples processed by simple thermomechanical treatment. The Ce- and Fe-modified alloy exhibits fine-grained structure and superplasticity at sub-solidus temperatures, increased yield strength, and good room temperature ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.A. Belov, E.A. Naumova, and D.G. Eskin, Mater. Sci. Eng. A 271, 134 (1999).

    Google Scholar 

  2. N.A. Belov and A.V. Khvan, Acta Mater. 55, 5473 (2007).

    Google Scholar 

  3. E.T. Stromme, H.B. Henderson, Z.C. Sims, M.S. Kesler, D. Weiss, R.T. Ott, F. Meng, S. Kassoumeh, J. Evangelista, G. Begley, and O. Rios, JOM 70, 866 (2018).

    Google Scholar 

  4. N.A. Belov, A.A. Aksenov, and D.G. Eskin, Iron in Aluminium Alloys: Impurity and Alloying Element, 1st ed. (London: Taylor and Francis, 2002), p. 360.

    Google Scholar 

  5. Z.C. Sims, O. Rios, S.K. McCall, T. Van Buuren, R.T. Ott, Light Metals, 111 (2016).

  6. Z. Zhang, X. Bian, and Y. Wang, Zeitschrift für Metallkunde 93, 578 (2002).

    Google Scholar 

  7. V.M. Vončina, S. Kores, P. Mrvar, and J. Medved, J. Alloy. Compd. 509, 7349 (2011).

    Google Scholar 

  8. A.S. Anasyida, A.R. Daud, and M.J. Ghazali, Mat. Des. 31, 365 (2010).

    Google Scholar 

  9. A.V. Krainikov and O.D. Neikov, Powder Metall. Met. Ceram. 51, 554 (2013).

    Google Scholar 

  10. J. Wadsworth and F.H. Froes, JOM 41, 12 (1989).

    Google Scholar 

  11. N.A. Belov and A.V. Khvan, Russ. J. Non-ferrous Metals 48, 45 (2007).

    Google Scholar 

  12. J. Gröbner, D. Mirković, and R. Schmid-Fetzer, Metall. Mater. Trans. A 35A, 3349 (2004).

    Google Scholar 

  13. Z.M. Shi, K. Gao, Y.T. Shi, and Y. Wang, Mater. Sci. Eng. A 632, 62 (2015).

    Google Scholar 

  14. F.G. Coury, W.J. Botta, C. Bolfarini, C.S. Kiminami, and M.J. Kaufman, Acta Mater. 98, 221 (2015).

    Google Scholar 

  15. F.G. Coury, E.L. Pires, W. Wolf, F.H.P. Almeida, A.L.C. Silva, W.J. Botta, C.S. Kiminami, and M.J. Kaufman, J. Alloy. Compd. 727, 460 (2017).

    Google Scholar 

  16. D.R. Manca, A.Y. Churyumov, A.V. Pozdniakov, A.S. Prosviryakov, D.K. Ryabov, A.Y. Krokhin, V.A. Korolev, and D.K. Daubarayte, Met. Mater. Int. 25, 633 (2019).

    Google Scholar 

  17. A. Plotkowski, O. Rios, N. Sridharan, Z. Sims, K. Unocic, R.T. Ott, R.R. Dehoff, and S.S. Babu, Acta Mater. 126, 507 (2017).

    Google Scholar 

  18. V.S. Zolotorevsky, N.A. Belov, and M.V. Glazoff, Cast. Alum. Alloys (2007). https://doi.org/10.1016/B978-0-08-045370-5.X5001-9.

    Article  Google Scholar 

  19. A. Inoue, M. Watanabe, H. Kimura, F. Takahashi, A. Nagata, and T. Masumoto, Mater. Trans. JIM 33, 723 (1992).

    Google Scholar 

  20. N.A. Belov, A.V. Khvan, and A.N. Alabin, Mat. Sci. Forum 519, 395 (2006).

    Google Scholar 

  21. M. Glazoff, A. Khvan, V. Zolotorevsky, N. Belov, and A. Dinsdale, Casting Aluminum Alloys, 2nd ed. (London: Elsevier Ltd., 2007), p. 562.

    Google Scholar 

  22. L.F. Mondolfo, Aluminum Alloys: Structure and Properties (London: Butterworths and Co, 1976), p. 806.

    Google Scholar 

  23. K.N. Ramakrishnan, Mater. Charact. 33, 119 (1994).

    Google Scholar 

  24. M. Fass, D. Eliezer, E. Aghion, and F.H. Froes, J. Mater. Sci. 33, 833 (1998).

    Google Scholar 

  25. A. Kamio, H. Tezuka, T. Sato, T. Takahashi, and T.T. Long, J. Jpn. Inst. Light Metals 35, 439 (1985).

    Google Scholar 

  26. G. Waterloo and H. Jones, J. Mater. Sci. 31, 2301 (1996).

    Google Scholar 

  27. M.Y. Murashkin, I. Sabirov, A.E. Medvedev, N.A. Enikeev, W. Lefebvre, R.Z. Valiev, and X. Sauvage, Mat. Des. 90, 433 (2016).

    Google Scholar 

  28. A.E. Medvedev, M.Y. Murashkin, N.A. Enikeev, R.Z. Valiev, P.D. Hodgson, and R. Lapovok, J. Alloy. Compd. 745, 696 (2018).

    Google Scholar 

  29. A. Mogucheva, D. Zyabkin, and R. Kaibyshev, Mat. Sci. Forum 706–709, 361 (2012).

    Google Scholar 

  30. R. Ayer, R.R. Mueller, J.C. Scanlon, and C.F. Klein, Metall. Trans. A (Physical Metall. Mater. Sci. 19A, 1645 (1988).

    Google Scholar 

  31. Ö.M.L. Öveçoglu, C. Suryanarayana, and W.D. Nix, MMTA 27, 1033 (1996).

    Google Scholar 

  32. B. Grieb, Bull. Alloy Phase Diagr. 10, 669 (1989).

    Google Scholar 

  33. M.C. Gao, N. Ünlü, G.J. Shiflet, M. Mihalkovic, and M. Widom, Metall. Mat. Trans. A 36, 3269 (2005).

    Google Scholar 

  34. Z.C. Sims, D. Weiss, S.K. McCall, M.A. McGuire, R.T. Ott, T. Geer, O. Rios, and P.A.E. Turchi, JOM 68, 1940 (2016).

    Google Scholar 

  35. H. Qu, W. Liu, and Y. Liu, Adv. Mater. Res. 194, 1291 (2011).

    Google Scholar 

  36. D.G. Eskin and L.S. Toropova, Mater. Sci. Eng. A 183, 1 (1994).

    Google Scholar 

  37. O. Engler, G. Laptyeva, and N. Wang, Mater. Charact. 79, 60 (2013).

    Google Scholar 

  38. Ch Zhang, Y. Wu, X. Cai, F. Zhao, S. Zheng, G. Zhou, and S. Wu, Mater. Sci. Eng. A 323, 226 (2002).

    Google Scholar 

  39. D. Weiss, SAE Tech. Paper 32, 0019 (2016). https://doi.org/10.4271/2016-32-0019.

    Article  Google Scholar 

  40. N.A. Belov, D.G. Eskin, A.A.N.A. Aksenov, A.A. Belov, and D.G.Eskin Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, 1st ed. (London: Elsevier Ltd, 2005), p. 413.https://doi.org/10.1016/B978-0-08-044537-3.X5000-8.

    Book  Google Scholar 

  41. L.Y. Yang, J.G. Zhao, and W.S. Zhan, J. Phys. F Met. Phys. 17, 97 (1987).

    Google Scholar 

  42. L.M. Angers, L.D. Marks, J.R. Weertman, and M.E. Fine, MRS Proc. 62, 255 (1986).

    Google Scholar 

  43. K.O. Odinaev and I.N. Ganiev, Izv. Akad. Nauk SSSR. Met. 161 (1995).

  44. J. Gröbner, D. Kevorkov, and R. Schmid-Fetzer, Intermetallics 10, 415 (2002).

    Google Scholar 

  45. A.E. Medvedev, M.Y. Murashkin, N.A. Enikeev, I. Bikmukhametov, R.Z. Valiev, P.D. Hodgson, and R. Lapovok, J. Alloy. Compd. 796, 321 (2019).

    Google Scholar 

  46. X.L. Shi, R.S. Mishra, and T.J. Watson, Mater. Sci. Eng., A 494, 247 (2008).

    Google Scholar 

  47. E. Nes and J.A. Wert, Scr. Metall. 18, 1433 (1984). https://doi.org/10.1016/0036-9748(84)90381-8.

    Article  Google Scholar 

  48. F.J. Humphreys, Acta Metall. 25, 1323 (1977). https://doi.org/10.1016/0001-6160(77)90109-2.

    Article  Google Scholar 

  49. F.J. Humphreys, Met. Sci. 13, 136 (1979). https://doi.org/10.1179/msc.1979.13.3-4.136.

    Article  Google Scholar 

  50. K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé, Prog. Mat. Sci. 92, 284 (2018).

    Google Scholar 

  51. A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Pergamon Press, 2004), p. 658.

    Google Scholar 

  52. A.V. Mikhaylovskaya, M.A. Ryazantseva, and V.K. Portnoy, Mater. Sci. Eng. A 528, 7306 (2011).

    Google Scholar 

  53. E.W. Lee and T.R. McNelley, JOM 39, 57 (1987). https://doi.org/10.1007/BF03257546.

    Article  Google Scholar 

  54. Z. Jia, G. Hu, B. Forbord, and J.K. Solberg, Mater. Sci. Eng. A 444, 284 (2007).

    Google Scholar 

  55. C.S. Smith, Metall. Mater. Trans. A 175, 15 (1948). https://doi.org/10.1007/s11663-010-9364-6.

    Article  Google Scholar 

  56. F.J. Humphreys, P.B. Prangnell, and R. Priestner, Curr. Opin. Solid State Mater. Sci. 5, 15 (2001).

    Google Scholar 

  57. M.J. Jones and F.J. Humphreys, Acta Mater. 51, 2149 (2003).

    Google Scholar 

  58. A.V. Mikhaylovskaya, A.A. Kishchik, A.D. Kotov, O.V. Rofman, and N.Y. Tabachkova, Mater. Sci. Eng. A 760, 37 (2019).

    Google Scholar 

  59. W.E. Frazier, E.W. Lee, M.E. Donnellan, and J.J. Thompson, JOM 41, 22 (1989).

    Google Scholar 

  60. J. Hirsch, Fundamentals of Aluminium Metallurgy, Production, Processing and Applications, 719 (2011).

    Google Scholar 

  61. T.G. Langdon, J. Mater. Sci. 44, 5998 (2009).

    Google Scholar 

  62. B.J. Dunwoody, in Mater. Sci. Forum (2001), pp. 59–64.

  63. P.A. Schweitzer, in Corros. Corros. Prot. Handbook, 2nd Edn. (2017), pp. 23–32.

  64. A.A. Kishchik, A.V. Mikhaylovskaya, V.S. Levchenko, and V.K. Portnoy, Phys. Met. Metallogr. 118, 96 (2017).

    Google Scholar 

  65. K.B. Hyde and P.S. Bate, Acta Mater. 53, 4313 (2005).

    Google Scholar 

  66. W. Xu, M. Ferry, J.M. Cairney, and F.J. Humphreys, Acta Mater. 55, 5157 (2007).

    Google Scholar 

  67. H. Miura, T. Sakai, A. Belyakov, G. Gottstein, M. Crumbach, and J. Verhasselt, Acta Mater. 51, 1507 (2003).

    Google Scholar 

  68. J. Oliver, J. Chem. Inf. Model. 53, 1689 (2013).

    Google Scholar 

  69. A.O.F. Hayama, H.R.Z. Sandim, J.F.C. Lins, M.F. Hupalo, and A.F. Padilha, Mater. Sci. Eng. A 371, 198 (2004).

    Google Scholar 

  70. D. Sorgente and L. Tricarico, Int. J. Mater. Form. 7, 179 (2014).

    Google Scholar 

  71. M.H. Hojjati, M. Zoorabadi, and S.J. Hosseinipour, J. Mater. Process. Technol. 205, 482 (2008).

    Google Scholar 

  72. M.T. Pérez-Prado, G. González-Doncel, O.A. Ruano, and T.R. McNelley, Acta Mater. 49, 2259 (2001).

    Google Scholar 

  73. H. Masuda, T. Kanazawa, H. Tobe, and E. Sato, Scr. Mater. 149, 84 (2018).

    Google Scholar 

  74. T. Kudo, A. Goto, and K. Saito, Mat. Sci. Forum 735, 271 (2013).

    Google Scholar 

  75. A.V. Mikhaylovskaya, O.A. Yakovtseva, I.S. Golovin, A.V. Pozdniakov, and V.K. Portnoy, Mater. Sci. Eng. A 627, 31 (2015).

    Google Scholar 

  76. T.G. Nieh, J. Wadsworth, and O.D. Sherby, Superplasticity in Metals and Ceramics, 1st ed. (Cambridge: Cambridge University Press, 1997), p. 288.

    Google Scholar 

  77. O.D. Sherby and E.M. Taleff, Mater. Sci. Eng. A 322, 89 (2002).

    Google Scholar 

  78. M.T. Perez-Prado and M.E. Kassner, in Fundam. Creep Met. Alloy. 3rd Edn. (2015), pp. 139–157.

  79. A.A. Kishchik, A.V. Mikhaylovskaya, A.D. Kotov, O.V. Rofman, and V.K. Portnoy, Mater. Sci. Eng. A 718, 190 (2018).

    Google Scholar 

  80. K. Matsuki, H. Morita, M. Yamada, and Y. Murakami, Met. Sci. 11, 156 (1977).

    Google Scholar 

  81. F. Li, D.H. Bae, and A.K. Ghosh, Acta Mater. 45, 3887 (1997).

    Google Scholar 

  82. T.G. Langdon, Philos. Mag. 22, 689 (1970).

    Google Scholar 

  83. J.R. Spingarn and W.D. Nix, Acta Metall. 26, 1389 (1978).

    Google Scholar 

  84. R.I. Todd, Mater. Sci. Technol. 16, 1287 (2000).

    Google Scholar 

  85. K. Sotoudeh and P.S. Bate, Acta Mater. 58, 1909 (2010).

    Google Scholar 

  86. H. Masuda, H. Tobe, T. Hara, and E. Sato, Scr. Mater. 164, 82 (2019).

    Google Scholar 

  87. M.A. Clark and T.H. Alden, Acta Metall. 21, 1195 (1973).

    Google Scholar 

  88. D.G. Eskin, Miner. Met. Mater. Ser. (2018). https://doi.org/10.1007/978-3-319-72284-9_204.

    Article  Google Scholar 

  89. Y.A. Filatov, V.I. Yelagin, and V.V. Zakharov, Mater. Sci. Eng. A 280, 97 (2000).

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation [Grant # 17-79-20426].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mikhaylovskaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhaylovskaya, A.V., Kishchik, A.A., Tabachkova, N.Y. et al. Microstructural Characterization and Tensile Properties of Al-Mg-Fe-Ce Alloy at Room and Elevated Temperatures. JOM 72, 1619–1626 (2020). https://doi.org/10.1007/s11837-020-04039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04039-1

Navigation