Skip to main content

Advertisement

Log in

Facile Room-Temperature In Situ Incorporation of Transition-Metal Selenide (TMSe) Nanoparticles into MOF-5 for Oxygen Evolution Reaction

  • Electrochemical Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Development of facile, low-cost, and highly efficient oxygen evolution reaction (OER) catalysts with excellent oxygen evolution activity and stability has been a major challenge in recent years. In this work, efficient TMSe@MOF-5 catalysts were synthesized by in situ incorporation of presynthesized transition-metal selenide nanoparticles (MnSe, FeSe, CoSe, NiSe, CuSe, and ZnSe) into MOF-5 at room temperature. All the synthesized composites were successfully characterized by powder x-ray diffraction analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, elemental mapping, and ultraviolet–visible spectrophotometry. Among various TMSe@MOF-5/NF working electrodes, MnSe@MOF-5/NF showed higher OER catalytic activity, requiring an overpotential of only 170 mV to achieve a current density of 10 mA cm−2 in alkaline medium with a Tafel slope of 61 mV dec−1, which is superior to many other reported OER catalysts including state-of-the-art RuO2 (ƞ10 = 290 mV). It is believed that the higher OER activity of MnSe@MOF-5/NF is due to the formation of a heterojunction from Ni of the nickel foam to the MnSe@MOF-5 at the surface of the working electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Cao, Z. Wu, B. Fu, H. Yu, and L. Piao, Catal. Today 330, 246 (2019).

    Google Scholar 

  2. N. Fajrina and M. Tahir, Int. J. Hydrogen Energy 44, 540 (2019).

    Google Scholar 

  3. N.M. Gupta, Renew. Sust. Energy Rev. 71, 585 (2016).

    Google Scholar 

  4. P.K. Dubey, P. Tripathi, R.S. Tiwari, A.S.K. Sinha, and O.N. Srivastava, Int. J. Hydrogen Energy 39, 16282 (2014).

    Google Scholar 

  5. T. Degnan, Focus Catal. 2015, 1 (2015).

    Google Scholar 

  6. Z. Wang, J. Li, X. Tian, X. Wang, Y. Yu, K.A. Owusu, L. He, L. Mai, and A.C.S. Appl, Mater. Interfaces 8, 19386 (2016).

    Google Scholar 

  7. X. Yan, L. Tian, M. He, and X. Chen, Nano Lett. 15, 6015 (2015).

    Google Scholar 

  8. M.A. Sayeed, T. Herd, and A.P. O’Mullane, J. Mater. Chem. A 4, 991–999 (2016).

    Google Scholar 

  9. M.S. Faber, M.A. Lukowski, Q. Ding, N.S. Kaiser, and S. Jin, J. Phys. Chem. C 118, 21347 (2014).

    Google Scholar 

  10. C. Tang, N. Cheng, Z. Pu, W. Xing, and X. Sun, Angew. Chem. Int. Ed. 54, 9351 (2015).

    Google Scholar 

  11. X. Li, L. Zhang, M. Huang, S. Wang, X. Li, and H. Zhu, J. Mater. Chem. A 4, 14789 (2016).

    Google Scholar 

  12. Z. Fang, L. Peng, H. Lv, Y. Zhu, C. Yan, S. Wang, P. Kalyani, X. Wu, and G. Yu, ACS Nano 11, 9550 (2017).

    Google Scholar 

  13. H. Wang, Y. Li, R. Wang, B. He, and Y. Gong, Electrochem. Acta 284, 504 (2018).

    Google Scholar 

  14. Y. Li, H. Wang, Y. Li, Q. Wang, D. Li, R. Wang, B. He, and Y. Gong, J. Catal. 364, 48 (2018).

    Google Scholar 

  15. C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, and J. Wang, Adv. Energy Mater. 7, 1602391 (2017).

    Google Scholar 

  16. S. Chen, G. Ma, Q. Wang, S. Sun, T. Hisatomi, T. Higashi, Z. Wang, M. Nakabayashi, N. Shibata, Z. Pan, T. Hayashi, T. Minegishi, T. Takata, and K. Domen, J. Mater. Chem. A 7, 7415 (2019).

    Google Scholar 

  17. S. Sahoo, P. Pazhamalai, K. Krishnamoorthy, and S.J. Kim, Electrochem. Acta 268, 403 (2018).

    Google Scholar 

  18. Y. Zhu, Z. Huang, Z. Hu, L. Xi, X. Ji, and Y. Liu, Electrochem. Acta 269, 30 (2018).

    Google Scholar 

  19. Y. Tian, Y. Ruan, J. Zhang, Z. Yang, J. Jiang, and C. Wang, Electrochem. Acta 250, 327 (2017).

    Google Scholar 

  20. X. Hou, P. Xie, S. Xue, H. Feng, L. Li, Z. Liu, and R. Zou, Mater. Sci. Semicond. Process. 79, 92 (2018).

    Google Scholar 

  21. L. Li, F. Zhang, Y. Ding, Y. Wang, and L. Zhang, J. Fluoresc. 19, 437 (2009).

    Google Scholar 

  22. S. Shit, S. Chhetri, W. Jang, N.C. Murmu, H. Koo, P. Samanta, T. Kuila, and A.C.S. Appl, Mater. Interfaces 10, 27712 (2018).

    Google Scholar 

  23. M.M. Peng, U.J. Jeon, M. Ganesh, A. Aziz, R. Vinod, M. Palanichamy, and H.T. Jang, Bull. Korean Chem. Soc. 35, 3213 (2014).

    Google Scholar 

  24. H.H. Zhao, H.L. Song, and L. Chou, J. Inorg. Chem. Commun. 15, 261 (2012).

    Google Scholar 

  25. S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.P. Lillerud, M. Bjorgen, and A. Zecchina, Chem. Commun. 20, 2300 (2004).

    Google Scholar 

  26. F. Qiao, L. Chen, X. Li, L. Li, and S. Ai, Sens. Actuators B 193, 255–262 (2014).

    Google Scholar 

  27. F. Qiao, Z. Wang, K. Xu, and S. Ai, Analyst 140, 6684 (2015).

    Google Scholar 

  28. S.K. Warkhade, S.P. Zodape, U.R. Pratap, and A.V. Wankhade, J. Mol. Liq. 279, 434 (2019).

    Google Scholar 

  29. M.S. Begum and A.J. Ahamed, J. Chem. Pharm. Res. 7, 2031 (2015).

    Google Scholar 

  30. P. Shyam, S. Chaturvedi, K. Karmaker, A. Bhattacharya, S. Singh, and S. Kulkarni, J. Mater. Chem. C 4, 611 (2016).

    Google Scholar 

  31. A.J. Ahamed, K. Ramar, and P.V. Kumar, J. Nanosci. Tech. 2, 148 (2016).

    Google Scholar 

  32. Y.H. Hu and L. Zhang, Phys. Rev. B 81, 174103 (2010).

    Google Scholar 

  33. J. Xing, K. Guo, Z. Zou, M. Cai, J. Du, and C. Xu, Chem. Commun. 54, 7046 (2018).

    Google Scholar 

  34. G. Mei, H. Liang, B. Wei, H. Shi, F. Ming, X. Xu, and Z. Wang, Electrochem. Acta 290, 82 (2018).

    Google Scholar 

  35. M. Fiaz and M. Athar, ChemistrySelect 4, 8508 (2019).

    Google Scholar 

Download references

Acknowledgements

This project is financially supported by the Higher Education Commission (HEC) of Pakistan under the International Research Support Initiative (IRSIP) program. The authors also acknowledge Prof. Duncan H. Gregory, School of Chemistry, University of Glasgow, UK, for facilitating laboratory facilities to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Athar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiaz, M., Athar, M. Facile Room-Temperature In Situ Incorporation of Transition-Metal Selenide (TMSe) Nanoparticles into MOF-5 for Oxygen Evolution Reaction. JOM 72, 2219–2225 (2020). https://doi.org/10.1007/s11837-019-03867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03867-0

Navigation