Skip to main content
Log in

Investigation of the Microstructure and Mechanical Properties of AZ31/Graphene Composite Fabricated by Semi-solid Isothermal Treatment and Hot Extrusion

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Magnesium matrix composites reinforced with 0.3 wt.% graphene were fabricated by semi-solid isothermal treatment using various reheating conditions and hot extrusion. The microstructures of the hot-extruded AZ31/graphene composites were clearly refined, with the finest grain size (7.05 µm) achieved after reheating at 610°C for 30 min. Energy-dispersive x-ray spectroscopy analysis revealed that increasing the reheating temperature promotes diffusion of the solute elements and affects the mechanical properties of the composite. The optimal mechanical properties were achieved after reheating at 620°C for 30 min, with a yield strength of 214.82 MPa and an ultimate tensile strength of 310.79 MPa. The significant improvement in the mechanical properties of the composite was mainly attributed to the refined grain size, uniformly redistributed solute elements, addition of graphene, and close interfacial bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q.H. Yuan, G.H. Zhou, L. Lin, L. Yong, and L. Lan, Carbon 127, 177 (2018).

    Article  Google Scholar 

  2. Y. Ali, D. Qiu, B. Jiang, F.S. Pan, and M.X. Zhang, J. Alloys Compd. 619, 639 (2015).

    Article  Google Scholar 

  3. M. Rashad, F.S. Pan, J.Y. Zhang, and M. Asif, J. Alloys Compd. 646, 223 (2015).

    Article  Google Scholar 

  4. Q. Chen, Y. Meng, Y.S. Yi, Y.Y. Wan, S. Sugiyama, and J. Yanagimoto, J. Alloys Compd. 774, 93 (2019).

    Article  Google Scholar 

  5. I. Dinaharan, S.C. Vettivel, M. Balakrishnan, and E.T. Akinlabi, J. Magnes. Alloys 7, 155 (2019).

    Article  Google Scholar 

  6. W.B. Yu, X.B. Li, M. Vallet, and L. Tian, Mech. Mater. 129, 246 (2019).

    Article  Google Scholar 

  7. F. Khorasani, M. Emamy, M. Malekan, H. Mirzadeh, B. Pourbahari, T. Krajnák, and P. Minárik, Mater. Charact. 147, 155 (2019).

    Article  Google Scholar 

  8. S.T. Manige, G. Harinath Gowd, and B. Chandra Mohan Reddy, J. Thin Films Coat. Sci. Technol. Appl. 5, 21 (2018).

    Google Scholar 

  9. N. Barri, A.R. Salasel, A. Abbasi, H. Mirzadeh, M. Emamy, and M. Malekan, Vacuum 164, 349 (2019).

    Article  Google Scholar 

  10. M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S. Wang, X.D. Tang, and X.W. Wang, Compos. B Eng. 60, 111 (2014).

    Article  Google Scholar 

  11. F.Y. Chen, J.M. Ying, Y.F. Wang, S.Y. Du, Z.P. Liu, and Q. Huang, Carbon 96, 836 (2016).

    Article  Google Scholar 

  12. Z. Li, Q. Guo, Z.Q. Li, G.L. Fan, D.B. Xiong, Y.S. Su, J. Zhang, and D. Zhang, Nano Lett. 15, 8077 (2015).

    Article  Google Scholar 

  13. D.B. Xiong, M. Cao, Q. Guo, Z.Q. Tan, G.L. Fan, Z.Q. Li, and D. Zhang, ACS Nano 9, 6934 (2015).

    Article  Google Scholar 

  14. W.J. Kim, T.J. Lee, and S.H. Han, Carbon 69, 55 (2014).

    Article  Google Scholar 

  15. S.E. Shin, H.J. Choi, J.H. Shin, and D.H. Bae, Carbon 82, 143 (2015).

    Article  Google Scholar 

  16. X. Du, W.B. Du, Z.H. Wang, K. Liu, and S.B. Li, Mater. Sci. Eng. A 711, 633 (2018).

    Article  Google Scholar 

  17. S.L. Xiang, X.J. Wang, M. Gupta, K. Wu, X.S. Hu, and M.Y. Zheng, Sci. Rep. UK 6, 38824 (2016).

    Article  Google Scholar 

  18. C.S. Goh, M. Gupta, J. Wei, and L.C. Lee, J. Compos. Mater. 41, 2325 (2007).

    Article  Google Scholar 

  19. H.F. Wu, J.C. Li, X.X. Zhang, and L. Geng, Trans. Mater. Heat Treat. 39, 14 (2018).

    Google Scholar 

  20. Y.S. Yi, Y. Meng, D.Q. Li, S. Sugiyama, and J. Yanagimoto, J. Mater. Sci. Technol. 34, 1149 (2018).

    Article  Google Scholar 

  21. H. Yan, Y.S. Rao, and R. He, J. Mater. Process. Technol. 214, 612 (2014).

    Article  Google Scholar 

  22. Q. Chen, G. Chen, L.N. Han, N. Hu, F. Han, Z.D. Zhao, X.S. Xia, and Y.Y. Wan, J. Alloys Compd. 656, 67 (2016).

    Article  Google Scholar 

  23. H. Asgharzadeh and M. Sedigh, J. Alloys Compd. 728, 47 (2017).

    Article  Google Scholar 

  24. X. Gao, H.Y. Yue, E.J. Guo, S.L. Zhang, B. Wang, E.H. Guan, S.S. Song, and H.J. Zhang, Mater. Des. 94, 54 (2016).

    Article  Google Scholar 

  25. H.Y. Xu, Z.S. Ji, M.L. Hu, and Z.Y. Wang, Trans. Nonferrous Met. Soc. 22, 2906 (2012).

    Article  Google Scholar 

  26. M.H. Nai, J. Wei, and M. Gupta, Mater. Des. 60, 490 (2014).

    Article  Google Scholar 

  27. K.P. So, I.H. Lee, D.L. Duong, T.H. Kim, S.C. Lim, K.H. An, and H.L. Young, Acta Mater. 59, 3313 (2011).

    Article  Google Scholar 

  28. L. Zhang, Q.D. Wang, W.J. Liao, W. Guo, W.Z. Li, H.Y. Jiang, and W.J. Ding, Mater. Sci. Eng. A 689, 427 (2017).

    Article  Google Scholar 

  29. Z.R. Zeng, Y.M. Zhu, R.L. Liu, S.W. Xu, C.H.J. Davies, J.F. Nie, and N. Birbilis, Acta Mater. 160, 97 (2018).

    Article  Google Scholar 

  30. W.B. Hutchinson and M.R. Barnett, Scr. Mater. 63, 737 (2010).

    Article  Google Scholar 

  31. S.R. Agnew, D.W. Brown, and C.N. Tome, Acta Mater. 54, 4841 (2006).

    Article  Google Scholar 

  32. O. Muransky, D.G. Carr, M.R. Barnett, E.C. Oliver, and P. Sittner, Mater. Sci. Eng. A 496, 14 (2008).

    Article  Google Scholar 

  33. M.R. Barnett, Z. Keshavarz, and X. Ma, Metall. Mater. Trans. 37, 2283 (2006).

    Article  Google Scholar 

  34. J.W. Luste, M. Thumann, and R. Baumann, Metal. Sci. J. 9, 853 (1993).

    Google Scholar 

  35. W.S. Miller and F.J. Humphreys, Scr. Metall. Mater. 25, 33 (1991).

    Article  Google Scholar 

  36. P.B. Li and T.J. Chen, Powder Metall. 59, 288 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51704087 and 51574100) and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2016033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xu, H., Wang, Y. et al. Investigation of the Microstructure and Mechanical Properties of AZ31/Graphene Composite Fabricated by Semi-solid Isothermal Treatment and Hot Extrusion. JOM 71, 4162–4170 (2019). https://doi.org/10.1007/s11837-019-03736-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03736-w

Navigation