Skip to main content

Advertisement

Log in

Interplay Between Grain Boundaries and Radiation Damage

  • Deformation and Transitions at Grain Boundaries
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The need for enhanced radiation-tolerant materials for advanced nuclear energy designs has resulted in a growing number of investigations that have explored the effect of grain boundaries under irradiation. The key motivation for examining the role of grain boundaries in radiation environments is the ability to tailor grain boundary networks through either the introduction of specific grain boundaries or an increase in the grain boundary density. While traditionally thought to be efficient sinks for radiation-induced point defects, many recent experimental studies in model and pure systems have shown significant heterogeneity in grain boundary-defect interactions and associated sink efficiency as a function of grain boundary character. Furthermore, grain boundaries can migrate under irradiation, which creates an additional level of complexity. This article will provide a prospective on the experimental observations associated with defect evolution near grain boundaries including variation in sink efficiency and grain boundary mobility in radiation environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Image was reprinted from Han et al.32, with permission from Elsevier

Fig. 2
Fig. 3

Image reprinted from Kaoumi et al.93, with the permission of AIP Publishing

Fig. 4

Images are reprinted from Bufford et al.97, with the permission of AIP Publishing (Color figure online)

Fig. 5

Image reproduced from Schuler et al.105 with permission from Elsevier (Color figure online)

Similar content being viewed by others

References

  1. S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).

    Google Scholar 

  2. D.L. Olmsted, S.M. Foiles, and E.A. Holm, Acta Mater. 57, 3694 (2009).

    Google Scholar 

  3. F. Abdeljawad, S.M. Foiles, A.P. Moore, A.R. Hinkle, C.M. Barr, N.M. Heckman, K. Hattar, and B.L. Boyce, Acta Mater. 158, 440 (2018).

    Google Scholar 

  4. D.L. Olmsted, S.M. Foiles, and E.A. Holm, Scr. Mater. 57, 1161 (2007).

    Google Scholar 

  5. J.L. Priedeman, C.W. Rosenbrock, O.K. Johnson, and E.R. Homer, Acta Mater. 161, 431 (2018).

    Google Scholar 

  6. E.R. Homer, S. Patala, and J.L. Priedeman, Sci. Rep. 5, 15476 (2015).

    Google Scholar 

  7. G.S. Rohrer, J. Mater. Sci. 46, 5881 (2011).

    Google Scholar 

  8. G. Odette, M. Alinger, and B. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008).

    Google Scholar 

  9. A. Misra and L. Thilly, MRS Bull. 35, 965 (2010).

    Google Scholar 

  10. X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, and H. Wang, Prog. Mater. Sci. 96, 217 (2018).

    Google Scholar 

  11. R. Andrievski, J. Mater. Sci. 38, 1367 (2003).

    Google Scholar 

  12. G.R. Odette, JOM 66, 2427 (2014).

    Google Scholar 

  13. I. Beyerlein, A. Caro, M. Demkowicz, N. Mara, A. Misra, and B. Uberuaga, Mater. Today 16, 443 (2013).

    Google Scholar 

  14. A.J. Ardell and P. Bellon, Curr. Opin. Solid State Mater. Sci. 20, 115 (2016).

    Google Scholar 

  15. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 1st ed. (Berlin: Springer, 2007).

    Google Scholar 

  16. B.N. Singh, Nat. Phys. Sci. 244, 142 (1973).

    Google Scholar 

  17. B.N. Singh and A.J.E. Foreman, Philos. Mag. 29, 847 (1974).

    Google Scholar 

  18. B.N. Singh, M. Eldrup, S.J. Zinkle, and S.I. Golubov, Philos. Mag. A 82, 1137 (2002).

    Google Scholar 

  19. M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, and M.F. Horstemeyer, Phys. Rev. B 85, 064108 (2012).

    Google Scholar 

  20. X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Science 327, 1631 (2010).

    Google Scholar 

  21. A. Dunn, R. Dingreville, E. Martínez, and L. Capolungo, Acta Mater. 110, 306 (2016).

    Google Scholar 

  22. X.-M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga, Phys. Rev. B 85, 214103 (2012).

    Google Scholar 

  23. T. Frolov, D.L. Olmsted, M. Asta, and Y. Mishin, Nat. Commun. 4, 1899 (2013).

    Google Scholar 

  24. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Mater. Sci. Eng. A 540, 1 (2012).

    Google Scholar 

  25. G.J. Tucker and D.L. McDowell, Int. J. Plast. 27, 841 (2011).

    Google Scholar 

  26. G.A. Vetterick, J. Gruber, P.K. Suri, J.K. Baldwin, M.A. Kirk, P. Baldo, Y.Q. Wang, A. Misra, G.J. Tucker, and M.L. Taheri, Sci. Rep. 7, 12275 (2017).

    Google Scholar 

  27. R.W. Balluffi, J. Nucl. Mater. 69–70, 117 (1978).

    Google Scholar 

  28. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Oxford Classic Series 2006 (Oxford University Press, New York, NY, 1995).

  29. I. Beyerlein, M. Demkowicz, A. Misra, and B. Uberuaga, Prog. Mater. Sci. 74, 125 (2015).

    Google Scholar 

  30. E.F. Rauch and M. Véron, Mater. Charact. 98, 1 (2014).

    Google Scholar 

  31. P.W. Trimby, Ultramicroscopy 120, 16 (2012).

    Google Scholar 

  32. W. Han, M. Demkowicz, E. Fu, Y. Wang, and A. Misra, Acta Mater. 60, 6341 (2012).

    Google Scholar 

  33. S.J. Zinkle and K. Farrell, J. Nucl. Mater. 168, 262 (1989).

    Google Scholar 

  34. C.M. Barr, L. Barnard, J.E. Nathaniel, K. Hattar, K.A. Unocic, I. Szlurfarska, D. Morgan, and M.L. Taheri, J. Mater. Res. 30, 1290 (2015).

    Google Scholar 

  35. A. Horsewell and B.N. Singh, “Role of dislocations, dislocation walls, and grain boundaries in void formation during early stages of fast neutron irradiation.” Effects of Radiation on Materials: 12th International Symposium, STP870, ed. F.A. Garner and J.S. Perrin (Williamsburg, VA: ASTM, 1985).

    Google Scholar 

  36. R.W. Siegel, S.M. Chang, and R.W. Balluffi, Acta Metall. 28, 249 (1980).

    Google Scholar 

  37. M. Dollar and H. Gleiter, Scr. Metall. 19, 481 (1985).

    Google Scholar 

  38. O. El-Atwani, J. Nathaniel II, A. Leff, J. Baldwin, K. Hattar, and M. Taheri, Mater. Res. Lett. 5 (3), 195 (2016).

    Google Scholar 

  39. O. El-Atwani, J. Nathaniel, A. Leff, B. Muntifering, J. Baldwin, K. Hattar, and M. Taheri, J. Nucl. Mater. 484, 216 (2017).

    Google Scholar 

  40. M.J. Demkowicz, O. Anderoglu, X. Zhang, and A. Misra, J. Mater. Res. 26, 1666 (2011).

    Google Scholar 

  41. B.P. Uberuaga, L.J. Vernon, E. Martinez, and A.F. Voter, Sci. Rep. 5, 7801 (2015).

    Google Scholar 

  42. Y. Zhang, H. Huang, P.C. Millett, M. Tonks, D. Wolf, and S.R. Phillpot, J. Nucl. Mater. 422, 69 (2012).

    Google Scholar 

  43. C. Jiang, N. Swaminathan, J. Deng, D. Morgan, and I. Szlufarska, Mater. Res. Lett. 2, 100 (2013).

    Google Scholar 

  44. H. Jiang and I. Szlufarska, Sci. Rep. 8, 147 (2018).

    Google Scholar 

  45. O. El-Atwani, E. Martinez, E. Esquivel, M. Efe, C. Taylor, Y.Q. Wang, B.P. Uberuaga, S.A. Maloy, Phys. Rev. Mater. 2, 113604 (2018). https://doi.org/10.1103/PhysRevMaterials.2.113604

    Google Scholar 

  46. H. Trinkaus, B.N. Singh, and M. Victoria, J. Nucl. Mater. 233, 1089 (1996).

    Google Scholar 

  47. A.J.E. Foreman, B.N. Singh, and A. Horsewell, Mater. Sci. Forum 15–18, 895 (1987).

    Google Scholar 

  48. B.N. Singh and T. Leffers, J. Nucl. Mater. 105, 1 (1982).

    Google Scholar 

  49. J.O. Stiegler and E.E. Bloom, Radiat. Effects 8, 33 (1971).

    Google Scholar 

  50. B.N. Singh and S.J. Zinkle, J. Nucl. Mater. 217, 161 (1994).

    Google Scholar 

  51. H. Trinkaus, B.N. Singh, and A.J.E. Foreman, J. Nucl. Mater. 199, 173 (1992).

    Google Scholar 

  52. H. Trinkaus, B.N. Singh, and A.J.E. Foreman, J. Nucl. Mater. 206, 212 (1993).

    Google Scholar 

  53. X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater. Sci. 96, 217 (2018).

    Google Scholar 

  54. C. Sun, M. Song, K.Y. Yu, Y. Chen, M. Kirk, M. Li, H. Wang, and X. Zhang, Metall. Mater. Trans. A 44, 1966 (2013).

    Google Scholar 

  55. G. Vetterick, Radiation Damage in Nanocrystalline Iron, Materials Science and Engineering (Philadelphia: Drexel University, 2014).

    Google Scholar 

  56. O. El-Atwani, K. Hattar, J.A. Hinks, G. Greaves, S.S. Harilal, and A. Hassanein, J. Nucl. Mater. 458, 138 (2015).

    Google Scholar 

  57. K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E.G. Fu, and X. Zhang, J. Nucl. Mater. 425, 140 (2012).

    Google Scholar 

  58. Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, and S. Okuda, J. Nucl. Mater. 297, 355 (2001).

    Google Scholar 

  59. Y. Chen, J. Li, K.Y. Yu, H. Wang, M.A. Kirk, M. Li, and X. Zhang, Acta Mater. 111, 148 (2016).

    Google Scholar 

  60. J. Li, K.Y. Yu, Y. Chen, M. Song, H. Wang, M.A. Kirk, M. Li, and X. Zhang, Nano Lett. 15, 2922 (2015).

    Google Scholar 

  61. M. Rose, A.G. Balogh, and H. Hahn, Nucl. Instrum. Methods Phys. Res. B 127, 119 (1997).

    Google Scholar 

  62. G.M. Cheng, W.Z. Xu, Y.Q. Wang, A. Misra, and Y.T. Zhu, Scr. Mater. 123, 90 (2016).

    Google Scholar 

  63. C.M. Barr, N. Li, B.L. Boyce, and K. Hattar, Appl. Phys. Lett. 112, 181903 (2018).

    Google Scholar 

  64. O. El-Atwani, J.A. Hinks, G. Greaves, S. Gonderman, T. Qiu, M. Efe, and J.P. Allain, Sci. Rep. 4, 4716 (2014).

    Google Scholar 

  65. O. El-Atwani, J. Hinks, G. Greaves, J.P. Allain, and S.A. Maloy, Mater. Res. Lett. 5, 343 (2017).

    Google Scholar 

  66. O. El-Atwani, E. Esquivel, E. Aydogan, E. Martinez, J.K. Baldwin, M. Li, B.P. Uberuaga, and S.A. Maloy, Acta Mater. 165, 128 (2019). https://doi.org/10.1016/j.actamat.2018.11.024.

    Google Scholar 

  67. O. El-Atwani, A. Suslova, T.J. Novakowski, K. Hattar, M. Efe, S.S. Harilal, and A. Hassanein, Mater. Charact. 99, 68 (2015).

    Google Scholar 

  68. M.L. Jenkins and M.A. Kirk, Characterisation of Radiation Damage by Transmission Electron Microscopy (Philadelphia: Institute of Physics Publishing, 2000).

    Google Scholar 

  69. C.M. Parish, K.G. Field, A.G. Certain, and J.P. Wharry, J. Mater. Res. 30, 1275 (2015).

    Google Scholar 

  70. B. Yao, D.J. Edwards, and R.J. Kurtz, J. Nucl. Mater. 434, 402 (2013).

    Google Scholar 

  71. P.J. Phillips, M.C. Brandes, M.J. Mills, and M. De Graef, Ultramicroscopy 111, 1483 (2011).

    Google Scholar 

  72. W. Li, K.G. Field, and D. Morgan, NPJ Comput. Mater. 4, 36 (2018).

    Google Scholar 

  73. H. Yu, X. Yi, and F. Hofmann, Ultramicroscopy 195, 653 (2018).

    Google Scholar 

  74. X. Yi, A.E. Sand, D.R. Mason, M.A. Kirk, S.G. Roberts, K. Nordlund, and S.L. Dudarev, EPL (Europhys. Lett.) 110, 36001 (2015).

    Google Scholar 

  75. A. Aitkaliyeva, J.W. Madden, B.D. Miller, and J.I. Cole, Micron 67, 65 (2014).

    Google Scholar 

  76. V.E. Fradkov and L.S. Shvindlerman, Phys. Chem. Mech. Surf. 9, 180 (1982).

    Google Scholar 

  77. G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics (Kinetics: Applications, CRC Press, Boca Raton, 2009).

    Google Scholar 

  78. T. Rupert, D. Gianola, Y. Gan, and K. Hemker, Science 326, 1686 (2009).

    Google Scholar 

  79. D. Turnbull, JOM 3, 242 (1951).

    Google Scholar 

  80. C. Braun, J.M. Dake, C.E. Krill, and R. Birringer, Sci. Rep. 8, 1592 (2018).

    Google Scholar 

  81. J. Han, S.L. Thomas, and D.J. Srolovitz, Prog. Mater. Sci. 98, 386 (2018).

    Google Scholar 

  82. D.E. Alexander and G.S. Was, Phys. Rev. B 47, 14 (1993).

    Google Scholar 

  83. H.A. Atwater, C.V. Thompson, and H.I. Smith, J. Appl. Phys. 64, 2354 (1988).

    Google Scholar 

  84. J.C. Liu, M. Nastasi, and J.W. Mayer, J. Appl. Phys. 62, 423 (1987).

    Google Scholar 

  85. P. Wang, D.A. Thompson, and W.W. Smeltzer, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 7–8, 97 (1985).

    Google Scholar 

  86. P. Wang, D.A. Thompson, and W.W. Smeltzer, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 16, 17 (1986).

    Google Scholar 

  87. J.C. Liu, J. Li, and J.W. Mayer, J. Appl. Phys. 67, 2354 (1990).

    Google Scholar 

  88. G.J. Dienes and G.H. Vineyard, Radiat. Effects Solids 40, 1361 (1918).

    Google Scholar 

  89. G.H. Vineyard, Radiat. Effects 29, 245 (1976).

    Google Scholar 

  90. D.E. Alexander, G.S. Was, and L.E. Rehn, Nucl. Instrum. Methods Phys. Res. B59/60, 462 (1991).

    Google Scholar 

  91. D.E. Alexander, G.S. Was, and L.E. Rehn, J. Appl. Phys. 70, 1252 (1991).

    Google Scholar 

  92. D.E. Alexander and G.S. Was, Surf. Coat. Technol. 51, 8174 (1992).

    Google Scholar 

  93. D. Kaoumi, A.T. Motta, and R.C. Birtcher, J. Appl. Phys. 104, 073525 (2008).

    Google Scholar 

  94. D. Kaoumi, A. Motta, and R.C. Birtcher, J. ASTM Int. 4, 687 (2007).

    Google Scholar 

  95. D. Kaoumi, A.T. Motta, and R.C. Birtcher, J. Nucl. Mater. 382, 184 (2008).

    Google Scholar 

  96. D. Kaoumi, A.T. Motta, and R.C. Birtcher, Nucl. Instrum. Methods Phys. Res. Sect. B (Beam Interact. Mater. Atoms) 242, 490 (2006).

    Google Scholar 

  97. D. Bufford, F. Abdeljawad, S. Foiles, and K. Hattar, Appl. Phys. Lett. 107, 191901 (2015).

    Google Scholar 

  98. U. Czubayko, V. Sursaeva, G. Gottstein, and L. Shvindlerman, Acta Mater. 46, 4527 (1998).

    Google Scholar 

  99. B.W. Reed and M. Kumar, Scr. Mater. 54, 1029 (2006).

    Google Scholar 

  100. C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, and M.L. Taheri, Acta Mater. 144, 281 (2018).

    Google Scholar 

  101. R.S. Averback, Nucl. Instrum. Methods Phys. Res. B 15, 2458 (1986).

    Google Scholar 

  102. S. Chee, B. Stumphy, N. Vo, R. Averback, and P. Bellon, Acta Mater. 58, 4088 (2010).

    Google Scholar 

  103. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).

    Google Scholar 

  104. S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Mater. 55, 6208 (2007).

    Google Scholar 

  105. J.D. Schuler and T.J. Rupert, Acta Mater. 140, 196 (2017).

    Google Scholar 

  106. J.E. Ludy and T.J. Rupert, Scr. Mater. 110, 37 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Claire Chisholm and Brad Boyce for useful discussions. The time of C.M.B. and K.H. was fully supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration under contract DE-NA-0003525. Los Alamos National Laboratory, an affirmative action, equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396. The views expressed in the article do not necessarily represent the views of the US DOE or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Hattar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barr, C.M., El-Atwani, O., Kaoumi, D. et al. Interplay Between Grain Boundaries and Radiation Damage. JOM 71, 1233–1244 (2019). https://doi.org/10.1007/s11837-019-03386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03386-y

Navigation