Skip to main content
Log in

The Anticorrosive and Antifouling Properties of Ni-W-P-nSiO2 Composite Coating in A Simulated Oilfield Environment

  • Surface Engineering for Improved Corrosion or Wear Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aiming at the problem of tubing corrosion and scaling in the oilfield environment, the corrosion and scaling behaviour of nickel-tungsten-phosphorus-silica (Ni-W-P-nSiO2) composite coatings prepared on L245 is investigated by immersion test, electrochemical measurement and static scaling test. The results indicated that the corrosion rate of Ni-W-P coating (0.1075 mm a−1) was higher than that of Ni-W-P-nSiO2 coating (0.0552 mm a−1), consistent with the results of corrosion current density (icorr). It was also found that the compact corrosion product film that forms on the Ni-W-P-nSiO2 coating consists of Ni3S2 and FeO. The average scaling rate and calcium loss rate value of the Ni-W-P-nSiO2 coating (2.43 × 10−6  g cm−2 h−1, 0.0344−2 cm−2) were both lower than those of the Ni-W-P coating (1.53 × 10−5 g cm−2 h−1, 0.0542 cm−2), which indicates that SiO2 nanoparticle co-deposition in Ni-W-P coating with the contact angle of 93.71° can improve its antifouling property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Jiang, S. Nešić, B. Kinsella, B. Brown, and D. Young, Corrosion 69, 15 (2013).

    Article  Google Scholar 

  2. J. Wang, C. Chen, R. Li, W. Jiang, X. Yu, ISOPE, vol. 54 (2015).

  3. K. Hari krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, and P.M. Kavimani, Metal. Mater. Trans. A 37, 1917 (2006).

    Article  Google Scholar 

  4. C.A. Loto, Silicon 8, 1 (2016).

    Google Scholar 

  5. S. Ranganatha, T.V. Venkatesha, and K. Vathsala, Appl. Surf. Sci. 256, 7377 (2010).

    Article  Google Scholar 

  6. S. Karthikeyan and L. Vijayaraghavan, IJMMM 4, 106 (2016).

    Article  Google Scholar 

  7. X.H. Zhao, Y. Han, Z.Q. Bai, and B. Wei, Electrochim. Acta 56, 7725 (2011).

    Article  Google Scholar 

  8. M. Islam, M.R. Azhar, Y. Khalid, R. Khan, and H.S. Abdo, J. Mater. Eng. Perform. 24, 1 (2015).

    Article  Google Scholar 

  9. Y. Jin and L. Hua, Mater. Sci. Technol. 23, 387 (2007).

    Google Scholar 

  10. X. Zhan, P. Zhang, P.M. Voyles, L. Xinyu, R. Akolka, and E. Frank, Acta Mater. 122, 400 (2017).

    Article  Google Scholar 

  11. C. Zhang, R.Q. Guo, Y. Yang, Y. Wu, and L. Liu, Electrochim. Acta 56, 6380 (2011).

    Article  Google Scholar 

  12. S. Roy and P. Sahoo, J. Coat. 2013, 1 (2013).

    Google Scholar 

  13. J. Seo and A. Mani, Phys. Fluids 28, 89 (2016).

    Article  Google Scholar 

  14. A. Sadeghzadeh-Attar, G. Ayubikia, and M. Ehteshamzadeh, Surf. Coat. Technol. 307, 837 (2016).

    Article  Google Scholar 

  15. Y. Cheng, C. Shuai, Q. Hou, D. Han, and Z. Han, Rare Met. Mater. Eng. 45, 1931 (2016).

    Article  Google Scholar 

  16. D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, and P.Y. Zhang, Appl. Surf. Sci. 255, 7051 (2009).

    Article  Google Scholar 

  17. X. Li, C. Zhi, Z. Zhang, and H. Dang, Appl. Surf. Sci. 252, 7856 (2006).

    Article  Google Scholar 

  18. J.L. Wang, Y.Z. Zhang, and R.D. Xu, Chin. Trans. Nonferrous Met. Soc. China 20, 839 (2010).

    Article  Google Scholar 

  19. J. Wang and R. Xu, Rare Met. Mater. Eng. 38, 567 (2009).

    Google Scholar 

  20. ASTM Standard G31, ASTM int. PA (2004).

  21. G. Lu and G. Zangari, Electrochim. Acta 47, 2969 (2002).

    Article  Google Scholar 

  22. A. Alzahrani, Y. Alhamed, L. Petrov, S. Armyanov, E. Valova, J. Georgieva, and J. Dille, J. Solid State Electron. 18, 1951 (2014).

    Article  Google Scholar 

  23. J.N. Balaraju, T.S.N.S. Narayanan, and S.K. Seshadri, Mater. Res. Bull. 41, 847 (2006).

    Article  Google Scholar 

  24. S. Ranganatha and T.V. Venkatesha, Phys. Scr. 85, 1 (2012).

    Article  Google Scholar 

  25. E. Valova, I. Georgiev, S. Armyanov, J.L. Delplancke, D. Tachev, T. Tsacheva, and J. Dille, J. Electrochem. Soc. 148, C266 (2001).

    Article  Google Scholar 

  26. X.Q. Xu, J. Miao, Z.Q. Bai, Y.R. Feng, Q.R. Ma, and W.Z. Zhao, Appl. Surf. Sci. 258, 8802 (2012).

    Article  Google Scholar 

  27. Y.R. Zhou, Z.J. Zhu, L.L. Nie, J.Q. Zhang, and F.H. Cao, Surf. Tech 45, 8 (2016).

    Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (No. 51602269) and scientific research starting project of SWPU (No. 2015QHZ019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wang, B., Xu, Y. et al. The Anticorrosive and Antifouling Properties of Ni-W-P-nSiO2 Composite Coating in A Simulated Oilfield Environment. JOM 70, 2619–2625 (2018). https://doi.org/10.1007/s11837-018-3133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3133-4

Navigation