Skip to main content
Log in

Numerical Modeling of Liquid–Liquid Mass Transfer and the Influence of Mixing in Gas-Stirred Ladles

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ladle refining plays a key role in the steelmaking process. During the refining, a bubbly gas stream is used for mixing and to enhance the rate of removal of impurities from the molten steel. A numerical model has been developed to understand mass transfer and mixing behavior in a three-phase gas-stirred ladle. A two-resistance approach was used for the liquid–liquid mass transfer, while the mass transfer coefficient was determined using the Small Eddy theory. The model was validated with experimental data, obtained from a water–oil physical model simulating an industrial ladle with a scale factor of 1/17, valid for axisymmetric gas injection. Three variables were included to study the mass transfer behavior, namely gas flow rate, Q, oil (slag) thickness, h, and oil (slag) viscosity, \( \mu_{\text{o}} \). The gas flow rate ranged from 2.85 L/min to 8.56 L/min to meet industrial operating conditions. It was found that: (1) the volumetric mass transfer coefficient (ka) increases when the gas flow rate (Q) increases; and (2) increasing slag (oil) thickness has a positive influence on mass transfer as it considerably increases the interfacial area and promotes turbulence at the interface. At this range of gas flow rate, the effect of slag (oil) viscosity is limited. A general correlation was established: \( {\text{ka}} = 0.058Q^{0.459} h^{0.612} \). Mixing time was studied within the same flow rate range to observe its influence on the mass transfer. Mixing in the ladle is accomplished in a much shorter time than interphase mass transfer, specifically by two orders of magnitude, which indicates that mass transfer is the rate-limiting step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Du, Improving Process Design in Steelmaking, Fundamentals of Metallurgy (Cambridge: Woodhead Publishing Limited, 2005), pp. 369–398.

    Google Scholar 

  2. A. Ghosh, Secondary Steel Making: Principles and Applications (Boca Raton: CRC Press LLC, 2001).

    Google Scholar 

  3. G.J.W. Kors and P.C. Glaws, Ladle Refining and Vacuum Degassing, the Making, Shaping and Treating of Steel (Pittsburgh: The AISE Steel Foundation, 1998), pp. 661–713.

    Google Scholar 

  4. S. Kim and R.J. Fruehan, Metall. Trans. B 18B, 381–390 (1987).

    Article  Google Scholar 

  5. K. Mori, Trans. ISIJ 28, 246–261 (1988).

    Article  Google Scholar 

  6. K. Ogawa and T. Onoue, ISIJ Int. 29, 148–153 (1989).

    Article  Google Scholar 

  7. M. Martín, M. Rendueles, and M. Díaz, Chem. Eng. Res. Des. 83, 1076–1084 (2005).

    Article  Google Scholar 

  8. A. Dutta, R.P. Ekatpure, G.J. Heynderickx, A. de Broqueville, and G.B. Marin, Chem. Eng. Sci. 65, 1678–1693 (2010).

    Article  Google Scholar 

  9. D. Mazumdar and R.I.L. Guthrie, ISIJ Int. 35, 1–20 (1995).

    Article  Google Scholar 

  10. P.G. Jönsson and L.T.I. Jonsson, ISIJ Int. 41, 1289–1302 (2001).

    Article  Google Scholar 

  11. D. Mazumdar and J.W. Evans, ISIJ Int. 44, 447–461 (2004).

    Article  Google Scholar 

  12. G.A. Irons, A. Senguttuvan, and K. Krishnapisharody, ISIJ Int. 55, 1–6 (2015).

    Article  Google Scholar 

  13. Y. Zang, X. Zang, B. Xu, W. Cai, and F. Wang, Can. J. Chem. Eng. 93, 2307–2314 (2015).

    Article  Google Scholar 

  14. J.L. Xia, T. Ahokaien, and L. Holappa, Scand. J. Metall. 30, 69–76 (2001).

    Article  Google Scholar 

  15. J.L. Xia and T. Ahokaien, Metall. Mater. Trans. B 32, 733–741 (2001).

    Article  Google Scholar 

  16. H. Türkoğlu and B. Farouk, Metall. Trans. B 21, 771–781 (1990).

    Article  Google Scholar 

  17. W. Lou and M. Zhu, Metall. Mater. Trans. B 44, 1251–1263 (2013).

    Article  Google Scholar 

  18. G. Venturini and M.B. Goldschmit, Metall. Mater. Trans. B 38, 461–475 (2007).

    Article  Google Scholar 

  19. M. Al-Harbi, H.V. Atkinson, and S. Gao, Proceedings of the XIth MCWASP (Opio, 2006).

  20. B. Li, H. Yin, C.Q. Zhou, and F. Tsukihashi, ISIJ In. 48, 1704–1711 (2008).

    Article  Google Scholar 

  21. U. Singh, R. Anapagaddi, S. Mangal, K.A. Padmanabhan, and A.K. Singh, Metall. Mater. Trans. B 47B, 1804–1816 (2016).

    Article  Google Scholar 

  22. S. Lin, H. Chen, and D. Xie, Asia-Pacific Energy Equipment Engineering Research Conference (2015), pp. 310–313.

  23. K. Nakanishi, J. Szekely, and C.W. Chang, Ironmaking Steelmaking 2, 115–124 (1975).

    Google Scholar 

  24. S. Asai, T. Okamoto, J. He, and I. Muchi, Trans. ISIJ 23, 43–50 (1983).

    Article  Google Scholar 

  25. M. Zhu, T. Inomoto, I. Sawada, and T. Hsiao, ISIJ Int. 35, 472–479 (1995).

    Article  Google Scholar 

  26. S.W.P. Cloeete, J.J. Eksten, and S.M. Bradshaw, Miner. Eng. 46–47, 16–24 (2013).

    Article  Google Scholar 

  27. S. Ganguly and S. Chakraborty, Ironmaking Steelmaking 35, 524–530 (2008).

    Article  Google Scholar 

  28. W. Lao and M. Zhu, ISIJ Int. 54, 9–18 (2014).

    Article  Google Scholar 

  29. L. Li, Z. Liu, B. Li, H. Matsuura, and F. Tsukihashi, ISIJ Int. 55, 1337–1346 (2015).

    Article  Google Scholar 

  30. M.A. Ramirez-Argaez, A. Conejo, and A. Amaro-Villeda, ISIJ Int. 54, 1–8 (2014).

    Article  Google Scholar 

  31. A. Chaendera and R.H. Eric, Effect of Slag Phase on Mixing and Mass Transfer in a Model Creusot Loire Uddeholm (CLU) Converter (The Mineral, Metals & Materials Society, 2017), pp. 45–61.

  32. L.T. Costa and R.P. Tavares, Mass Transfer-Advancement in Process Modelling, ed. by M. Solecki (InTech, New York, 2015), pp. 149–167.

  33. Q. Cao, A. Pitts, and L. Nastac, Ironmaking Steelmaking 45, 280–287 (2018).

    Article  Google Scholar 

  34. F.P. Incropera and D.P. DeWitt, Introduction to Heat Transfer (New York: Wiley, 2002).

    Google Scholar 

  35. J.C. Lamont and D.S. Scott, AIChE J. 16, 513–519 (1970).

    Article  Google Scholar 

  36. V. Sahajwalla, J.K. Brimacombe, and M.E. Salcudean, Steelmaking Conf., Proceedings ISS, Vol. 72 (1989), pp. 497–501.

  37. M. Ramírez-Argáez and C. González-Rivera, The 3rd Pan American Materials Congress (2017).

  38. L. Dong, S.T. Johansen, and T.A. Engh, Can. J. Metall. Mater. Sci. 31, 299–307 (1992).

    Google Scholar 

  39. P.H. Calderbank and M.B. Moo-Young, Chem. Eng. Sci. 16, 39–54 (1961).

    Article  Google Scholar 

  40. G.E. Fortescue and J.R.A. Pearson, Chem. Eng. Sci. 22, 1163–1176 (1967).

    Article  Google Scholar 

  41. L.P. Hung, C.S. Garbe, and W. Tsai, The 6th International Symposium on Gas Transfer at Water Surfaces (2010), pp. 17–21.

  42. ANSYS Fluent Theory Guide 17.0, ANSYS Inc, 2016

  43. P.J. Roache, ASME J. Fluids Eng. 71, 405–413 (1994).

    Article  Google Scholar 

  44. M. Hirasawa, K. Mori, M. Sano, A. Hatanaka, Y. Shimatani, and Y. Okazaki, Trans. ISIJ 27, 277–282 (1987).

    Article  Google Scholar 

  45. D.G.C. Robertson and B.B. Staples, Process Engineering of Pyrometallurgy (Institution of Mining and Metallurgy, London, 1974), pp. 51–59.

    Google Scholar 

  46. S. Taniguchi, S. Kawaguchi, and A. Kikuchi, Appl. Math. Model. 26, 249–262 (2002).

    Article  Google Scholar 

  47. Y. Ohga, S. Taniguchi, and J. Kikuchi, Tetsu-to-Hagane 71, S897 (1985).

    Google Scholar 

  48. M. Hirasawa, K. Mori, M. Sano, Y. Shimada, and Y. Okazaki, Tetsu-to-Hagane 71, S898 (1985).

    Google Scholar 

  49. S. Endo and M. Hasegawa, Tetsu-to-Hagane 71, S899 (1985).

    Article  Google Scholar 

  50. S. Joo and R.I.L. Guthrie, Metall. Trans. B 23, 765–778 (1992).

    Article  Google Scholar 

  51. S.P. Patil, D. Satish, M. Peranandhanathan, and D. Mazumdar, ISIJ Int. 50, 1117–1124 (2010).

    Article  Google Scholar 

  52. D.Mazumdar, Fluid flow, Particle motion and mixing in ladle metallurgy operations, PhD Thesis, McGill University, Montreal, 1985

  53. Q. Ying, L. Yun, and L. Liu, Scaninject III: 3rd International Conference on Refining of Iron and Steel by Powder Injection (Lulea, Sweden: MEFOS, 1983).

  54. O. Haida, T. Emi, S. Yamada, and F. Sudo, Scaninject II: 2nd International Conference on Injection Metallurgy (Lulea, Sweden: MEFOS, 1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, Q.N., Ramírez-Argáez, M.A., Conejo, A.N. et al. Numerical Modeling of Liquid–Liquid Mass Transfer and the Influence of Mixing in Gas-Stirred Ladles. JOM 70, 2109–2118 (2018). https://doi.org/10.1007/s11837-018-3056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3056-0

Navigation