Skip to main content

Advertisement

Log in

Fabrication by Electrophoretic Deposition of Nano-Fe3O4 and Fe3O4@SiO2 3D Structure on Carbon Fibers as Supercapacitor Materials

  • Advanced Materials for Energy Storage and Conversion Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Core–shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core–shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet–visible (UV–Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was ~ 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~ 11.26 emu/g) compared with Fe3O4 powder (~ 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of − 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of ~ − 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Sarno, E. Ponticorvo, and C. Cirillo, J. Phys. Chem. Solids 99, 138 (2016).

    Article  Google Scholar 

  2. S. Majumder, S. Dey, K. Bagani, S.K. Dey, S. Banerjee, and S. Kumar, Dalton Trans. 44, 7190 (2015).

    Article  Google Scholar 

  3. F.H. Chen, Q. Gao, and J.Z. Ni, Nanotechnology 19, 165103 (2008).

    Article  Google Scholar 

  4. M. Sonmez, M. Georgescu, L. Alexandrescu, and D. Gurau, Curr. Pharm. Des. 21, 5324 (2015).

    Article  Google Scholar 

  5. A. Hajalilou, S.A. Mazlan, S.T. Shilan, and E. Abouzari-Lotf, Colloid Polym. Sci. 295, 1499 (2017).

    Article  Google Scholar 

  6. S. Sun and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).

    Article  Google Scholar 

  7. A. Hajalilou, A. Kianvash, K. Shameli, and H. Lavvafi, Appl. Phys. Lett. 110, 261902 (2017).

    Article  Google Scholar 

  8. G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  Google Scholar 

  9. L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang, and G. Yang, Nanoscale 5, 3793 (2013).

    Article  Google Scholar 

  10. A. Hajalilou, M. Hashim, and N. Sarami, J. Phys. D Appl. Phys. 145001, 145001 (2015).

    Article  Google Scholar 

  11. A. Hajalilou, M. Hashim, and H.M. Kamari, J. Mater. Sci. Mater. Electron. 26, 1709 (2015).

    Article  Google Scholar 

  12. R.D. Waldron, Phys. Rev. Lett. 99, 1727 (1955).

    Google Scholar 

  13. J.A. Lopez, F. González, F.A. Bonilla, G. Zambrano, and M.E. Gómez, Rev. Latin Am. Metal. Mater. 30, 60 (2010).

    Google Scholar 

  14. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, and H.M. Kamari, J. Therm. Anal. Calorim. 119, 995 (2015).

    Article  Google Scholar 

  15. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, and M.T. Masoudi, Chin. Phys. B 24, 048102 (2015).

    Article  Google Scholar 

  16. A. Hajalilou, S.A. Mazlan, H. Lavvafi, and K. Shameli, Field Responsive Fluids as Smart Materials (Singapore: Springer, 2016).

    Book  Google Scholar 

  17. X. Zhao, C. Johnston, A. Crossley, and P.S. Grant, J. Mater. Chem. 20, 7637 (2010).

    Article  Google Scholar 

  18. S.C. Pang, W.H. Khoh, and S.F. Chin, J. Mater. Sci. 45, 5598 (2010).

    Article  Google Scholar 

  19. J. Chen, K. Huang, and S. Liu, Electrochim. Acta 55, 1 (2009).

    Article  Google Scholar 

  20. S.Y. Wang, K.C. Ho, S.L. Kuo, and N.L. Wu, J. Electrochem. Soc. 153, A75 (2006).

    Article  Google Scholar 

  21. S.Y. Wang and N.L. Wu, J. Appl. Electrochem. 33, 345 (2003).

    Article  Google Scholar 

  22. X. Du, C. Wang, M. Chen, Y. Jiao, and J. Wang, J. Phys. Chem. C 113, 2643 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge financial support from the Iranian Nano Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Hajalilou.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajalilou, A., Abouzari-Lotf, E., Etemadifar, R. et al. Fabrication by Electrophoretic Deposition of Nano-Fe3O4 and Fe3O4@SiO2 3D Structure on Carbon Fibers as Supercapacitor Materials. JOM 70, 1404–1410 (2018). https://doi.org/10.1007/s11837-018-2930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2930-0

Navigation