Skip to main content
Log in

Impact of Reversed Austenite on the Impact Toughness of the High-Strength Steel of Low Carbon Medium Manganese

  • Characterization of Advanced High Strength Steels for Automobiles
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We elucidate the relationship between the volume fraction of austenite and the Charpy impact toughness in a medium-Mn steel in terms of microstructural evolution with impact temperature. Different from retained austenite in the matrix after direct quenching, sub-micron lath-shaped morphology-reversed austenite in medium-Mn steel was produced by intercritical annealing. We found that reversed austenite steadily affected the fracture mode; only ductile fractures and dimples decreased with decreasing impact temperature. After the impact fracture test, the content of reversed austenite in the matrix increased slightly with a decreasing impact temperature due to the stability of the austenite grains caused by recrystallization of α′ martensite. Reversed austenite slightly decreased during the impact process with a decreasing impact temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.-K. Lee and J. Han, Mater. Sci. Technol. 31, 843 (2015).

    Article  Google Scholar 

  2. J. Han, S.-J. Lee, J.-G. Jung, and Y.-K. Lee, Acta Mater. 78, 369 (2014).

    Article  Google Scholar 

  3. S. Lee, S.J. Lee, S.S. Kumar, K. Lee, and B.C.D. Cooman, Metall. Mater. Trans. A 42, 3638 (2011).

    Article  Google Scholar 

  4. J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, Scr. Mater. 104, 87 (2015).

    Article  Google Scholar 

  5. M. Kuzmina, D. Ponge, and D. Raabe, Acta Mater. 86, 182 (2015).

    Article  Google Scholar 

  6. K.H. Kwon, I.C. Yi, Y. Ha, K.K. Um, J.K. Choi, K. Hono, K. Oh-ishi, and N.J. Kim, Scr. Mater. 69, 420 (2013).

    Article  Google Scholar 

  7. H. Choi, S. Lee, J. Lee, F. Barlat, and B.C.D. Cooman, Mater. Sci. Eng., A 687, 200 (2017).

    Article  Google Scholar 

  8. B.H. Sun, F. Fazeli, C. Scott, X.J. Yan, Z.W. Liu, X.Y. Qin, and S. Yue, Scr. Mater. 130, 49 (2017).

    Article  Google Scholar 

  9. D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, and H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 44, 286 (2013).

    Article  Google Scholar 

  10. S.J. Lee, S. Lee, and B.C.D. Cooman, Scr. Mater. 64, 649 (2011).

    Article  Google Scholar 

  11. Q. Zhou, L.H. Qian, J. Tan, J.Y. Meng, and F.C. Zhang, Mater. Sci. Eng., A 578, 370 (2013).

    Article  Google Scholar 

  12. B.C.D. Cooman, P. Gibbs, S. Lee, and D.K. Matlock, Metall. Mater. Trans. A 44, 2563 (2013).

    Article  Google Scholar 

  13. G.H. Gao, H. Zhang, X.L. Gui, P.L. Luo, Z.L. Tan, and B.Z. Bai, Acta Mater. 76, 425 (2014).

    Article  Google Scholar 

  14. R.L. Miller, Metall. Trans. 3, 905 (1972).

    Article  Google Scholar 

  15. H. Liu, L.X. Du, J. Hu, H.Y. Wu, X.H. Gao, and R.D.K. Misra, J. Alloys Compd. 695, 2072 (2017).

    Article  Google Scholar 

  16. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, and B. Hwang, Acta Mater. 122, 199 (2017).

    Article  Google Scholar 

  17. G.Q. Su, X.H. Gao, D.Z. Zhang, C.S. Cui, L.X. Du, C. Yu, J. Hu, and Z.G. Liu, Corrosion 73, 1367 (2017).

    Article  Google Scholar 

  18. C.M. Enloe, J.P. Singh and J.J. Coryell, in Proceedings of the International Symposium on New Developments in Advanced High-Strength Sheet Steels (Keystone, CO, USA: Association for Iron & Steel Technology, Warrendale, PA, 2017), pp. 110

  19. G.Q. Su, X.H. Gao, L.X. Du, D.Z. Zhang, J. Hu, and Z.G. Liu, Int. J. Electrochem. Sci. 11, 9447 (2017).

    Google Scholar 

  20. G.Q. Su and X.H. Gao, Materials 10, 938 (2017).

    Article  Google Scholar 

  21. ISO 6892-1, Metallic Materials-tensile Testing-Part 1: Method of Test at Room Temperature (2009)

  22. K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto, ISIJ Int. 32, 1311 (1992).

    Article  Google Scholar 

  23. X.H. Hu, X. Sun, L.G. Hector Jr, and Y. Ren, Acta Mater. 132, 230 (2017).

    Article  Google Scholar 

  24. J. Hu, L.X. Du, J.J. Wang, and C.R. Gao, Mater. Sci. Eng., A 577, 161 (2013).

    Article  Google Scholar 

  25. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Mater. Sci. Eng., A 529, 192 (2011).

    Article  Google Scholar 

  26. A. Srivastava, A.F. Bower, L.G. Hector Jr, J.E. Carsley, L. Zhang, and F. Abu-Farha, Modell. Simul. Mater. Sci. Eng. 24, 2 (2016).

    Article  Google Scholar 

  27. D. Gerbig, A. Srivastava, S. Osovski, L.G. Hector Jr, and A. Bower, Int. J. Fract. (2017). https://doi.org/10.1007/s10704-017-0235-x.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support by the National High-tech R&D Program (863 Program) No. 2015AA03A501.

Funding

This study was funded by the National High-tech R&D Program (863 Program) (No. 2015AA03A501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, G., Gao, X., Zhang, D. et al. Impact of Reversed Austenite on the Impact Toughness of the High-Strength Steel of Low Carbon Medium Manganese. JOM 70, 672–679 (2018). https://doi.org/10.1007/s11837-017-2732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2732-9

Navigation