Skip to main content
Log in

Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

  • Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the “stair-step” effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ASTM International, in F2792-12aStandard Terminology for Additive Manufacturing Technologies (2013).

  2. I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies (Berlin: Springer, 2010).

    Book  Google Scholar 

  3. G. Pyka, A. Burakowski, G. Kerckhofs, M. Moesen, S. Van Bael, J. Schrooten, and M. Wevers, Adv. Eng. Mater. 14, 363 (2012).

    Article  Google Scholar 

  4. D. Whitehouse, Profile and Areal (3D) Parameter Characterization (Amsterdam: Elsevier, 2002).

    Book  Google Scholar 

  5. C. Tuck and L. Blunt, Surf. Topogr. Metrol. Prop. 4, 20201 (2016).

    Article  Google Scholar 

  6. A. Townsend, N. Senin, L. Blunt, R.K. Leach, and J.S. Taylor, Precis. Eng. 46, 34 (2016).

    Article  Google Scholar 

  7. R.I. Campbell, M. Martorelli, and H.S. Lee, CAD Comput. Aided Des. 34, 717 (2002).

    Article  Google Scholar 

  8. D. Ahn, H. Kim, and S. Lee, J. Mater. Process. Technol. 209, 664 (2009).

    Article  Google Scholar 

  9. A. Diatlov, D. Buchbinder, W. Meiners, K. Wissenbach, and J. Bültmann, Innov. Dev. Virtual Phys. Prototyp. 53, 595 (2012).

    Google Scholar 

  10. G. Strano, L. Hao, R.M. Everson, and K.E. Evans, J. Mater. Process. Technol. 213, 589 (2013).

    Article  Google Scholar 

  11. A.B. Spierings, N. Herres, and G. Levy, Rapid Prototyp. J. 17, 195 (2011).

    Article  Google Scholar 

  12. A. Safdar, H.Z. He, L. Wei, A. Snis, and L.E. Chavez de Paz, Rapid Prototyp. J. 18, 401 (2012).

    Article  Google Scholar 

  13. K. Abd-Elghany and D.L. Bourell, Rapid Prototyp. J. 18, 420 (2012).

    Article  Google Scholar 

  14. M. Vetterli, M. Schmid, and K. Wegener, in Proceedings of Fraunhofer Direct Digital Manufacturing Conference (2014), pp. 1–6.

  15. M. Król, L.A. Dobrzański, Ł. Reimann, and I. Czaja, World Acad. Mater. Manuf. Eng. 60, 87 (2013).

    Google Scholar 

  16. L. Castillo, Study about the Rapid Manufacturing of Complex Parts of Stainless Steel and Titanium, TNO Report with the collaboration of AIMME (2005).

  17. Y. Ning, Y.S. Wong, J.Y.H. Fuh, and H.T. Loh, IEEE Trans. Autom. Sci. Eng. 3, 73 (2006).

    Article  Google Scholar 

  18. K. Abdel Ghany and S.F. Moustafa, Rapid Prototyp. J. 12, 86 (2006).

    Article  Google Scholar 

  19. J. Delgado, J. Ciurana, C. Reguant, and B. Cavallini, Innov. Dev. Des. Manuf. Adv. Res. Virtual Rapid Prototyp. 1, 349 (2010).

    Google Scholar 

  20. M. Badrossamay and T.H.C. Childs, in International Solid Freeform Fabrication Symposium (2006), p. 268.

  21. A. Triantaphyllou, C.L. Giusca, G.D. Macaulay, F. Roerig, M. Hoebel, R.K. Leach, B. Tomita, and K.A. Milne, Surf. Topogr. Metrol. Prop. 3, 24002 (2015).

    Article  Google Scholar 

  22. A. Temmler, E. Willenborg, and K. Wissenbach, in Proceedings of SPIE (2012), p. 82430W.

  23. EOS GmbH—Electro Optical Systems, Material Data Sheet EOS NickelAlloy IN718 Material Data Sheet Technical Data (2011).

  24. J.C. Fox, S.P. Moylan, and B.M. Lane, Proc. CIRP 45, 131 (2016).

    Article  Google Scholar 

  25. S. Moylan, in American Society for Precision Engineering 2015 Spring Topical Meeting (2015), pp. 100–105.

  26. D. Nečas and P. Klapetek, Open Phys. 10, 181 (2012).

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. John Lee for his assistance with the optical surface analysis and Dr. Maricela Maldonado for her assistance with SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Eshraghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Covarrubias, E.E., Eshraghi, M. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting. JOM 70, 336–342 (2018). https://doi.org/10.1007/s11837-017-2706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2706-y

Navigation