Skip to main content
Log in

Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Swelling of montmorillonite (Mt) is an important factor for many industrial applications. In this study, crystalline swelling of alkali-metal- and alkaline-earth-metal-Mt has been studied through energy optimization and molecular dynamics simulations using the clay force field by Materials Studio 8.0. The delamination and exfoliation of Mt are primarily realized by crystalline swelling caused by the enhanced interlayer cation hydration. The initial position of the interlayer cations and water molecules is the dominated factor for the accuracy of the Mt simulations. Crystalline swelling can be carried out in alkali-metal-Mt and Mg-Mt but with difficulty in Ca-Mt, Sr-Mt and Ba-Mt. The crystalline swelling capacity values are in the order Na-Mt > K-Mt > Cs-Mt > Mg-Mt. This order of crystalline swelling of Mt in the same group can be attributed to the differences between the interlayer cation hydration strengths. In addition, the differences in the crystalline swelling between the alkali-metal-Mt and alkaline-earth-metal-Mt can be primarily attributed to the valence of the interlayer cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Helmy, J. Colloid Interface Sci. 207, 128 (1998).

    Article  Google Scholar 

  2. D.E. Smith, Langmuir 14, 5959 (1998).

    Article  Google Scholar 

  3. F. Bergaya and G. Lagaly, Handbook of Clay Science, 2nd ed. (Amsterdam: Elsevier Science, 2013), p. 43.

    Google Scholar 

  4. S.M. Rao, T. Thyagaraj, and P. Raghuveer Rao, Geotech. Geol. Eng. 31, 1399 (2013).

    Article  Google Scholar 

  5. E. Ferrage, B. Lanson, N. Malikova, A. Plançon, B.A. Sakharov, and V.A. Drits, Chem. Mater. 17, 3499 (2005).

    Article  Google Scholar 

  6. E. Ferrage, B. Lanson, B.A. Sakharov, and V.A. Drits, Am. Mineral. 90, 1358 (2005).

    Article  Google Scholar 

  7. S. Morodome and K. Kawamura, Clays Clay Miner. 59, 165 (2011).

    Article  Google Scholar 

  8. L.L. Schramm and J.C.T. Kwak, Colloids Surf. 4, 43 (1982).

    Article  Google Scholar 

  9. K. Jasmund and G. Lagaly, Tonminerale und Tone, 1st ed. (Darmstadt: Steinkopff Verlag, 1993), p. 66.

    Book  Google Scholar 

  10. N.T. Skipper, G. Sposito, and F.R.C. Chang, Clays Clay Miner. 43, 294 (1995).

    Article  Google Scholar 

  11. F.C. Chang, N.T. Skipper, and G. Sposito, Langmuir 11, 2074 (1997).

    Article  Google Scholar 

  12. M.J. Avena, R. Cabrol, and C.P.D.E. Pauli, Clays Clay Miner. 38, 356 (1990).

    Article  Google Scholar 

  13. W.K. Mekhamer and F.F. Assaad, J. Appl. Polym. Sci. 73, 659 (1998).

    Article  Google Scholar 

  14. P. Na and F. Zhang, Acta Phys. Chim. Sin. 22, 1137 (2006).

    Article  Google Scholar 

  15. L. Zhang, X. Lu, X. Liu, J. Zhou, and H. Zhou, J. Phys. Chem. C 118, 29811 (2014).

    Article  Google Scholar 

  16. S.L. Teich-McGoldrick, J.A. Greathouse, C.F. Jove-Colon, and R.T. Cygan, J. Phys. Chem. C 119, 20880 (2015).

    Article  Google Scholar 

  17. V. Marry, P. Turq, T. Cartailler, and D. Levesque, J. Chem. Phys. 117, 3454 (2002).

    Article  Google Scholar 

  18. A. Delville and P. Laszlo, New J. Chem. 13, 481 (1989).

    Google Scholar 

  19. F.R.C. Chang, N.T. Skipper, and G. Sposito, Langmuir 11, 2734 (1995).

    Article  Google Scholar 

  20. G. Lagaly and I. Dékány, Developments in clay science.Colloid Clay Science, 2nd ed., ed. F. Bergaya and G. Lagaly (Amsterdam: Elsevier Inc., 2013), p. 255.

    Google Scholar 

  21. R.F. Giese, C.J. Van Oss, J. Norris, and P.M. Costanzo, Report No. 86, Company, Mémoire, January, (1989).

  22. M.E. Schrader and S. Yariv, J. Colloid Interface Sci. 136, 85 (1990).

    Article  Google Scholar 

  23. L.J. Michot, F. Villieras, M. Francois, J. Yvon, R. Le Dred, and J.M. Cases, Langmuir 10, 3765 (1994).

    Article  Google Scholar 

  24. H. Malandrini, F. Clauss, S. Partyka, and J. Douillard, J. Colloid Interface Sci. 194, 183 (1997).

    Article  Google Scholar 

  25. L. Sun, J.T. Tanskanen, J.T. Hirvi, S. Kasa, T. Schatz, and T.A. Pakkanen, Chem. Phys. 455, 23 (2015).

    Article  Google Scholar 

  26. J.D. Russell and V.C. Farmer, Clay Miner. 5, 443 (1964).

    Article  Google Scholar 

  27. T. Journal, W. Kirmske, A. Press, W.L. Hase, J.W. Simons, E. Richardson, J.W. Rabalais, J.M. Mcdonakl, V. Scherer, P. Mcglynn, S.P. Waich, W. Goddard, G. Herzberg, V. Nostrand, G. Verhaegen, L. Russell, F.S. Rowland, H. Laufer, M. Bass, C.F. Curtis, R.B. Bird, C. Chan, J.T. Bryant, L.D. Spicer, Y.N. Lin, S.P. Pavlou, G.W. Taylor, K. Krohn, N.J. Parks, J.W. Root, A. Hosaka, P.J. Robinson, K. Holbrook, T.H. Richardson, D.L. Bunker, Q.C. Program, F.B. Growcock, and L. Johnson, Society 82, 26 (1978).

    Google Scholar 

  28. G. Sposito, R. Prost, and J.P. Gaultier, Clays Clay Miner. 31, 9 (1983).

    Article  Google Scholar 

  29. C.T. Johnston, G. Sposito, and C. Erickson, Clays Clay Miner. 40, 722 (1992).

    Article  Google Scholar 

  30. J.L. Bishop, C.M. Pieters, and J.O. Edwards, Clays Clay Miner. 42, 702 (1994).

    Article  Google Scholar 

  31. S.F. Xu, W.Z. Johnston, C.T. Parker, and P. Agnew, Clays and Clay Miner. 48, 120 (2000).

    Article  Google Scholar 

  32. E. Rinnert, C. Carteret, B. Humbert, G. Fragneto-Cusani, J.D.F. Ramsay, A. Delville, J.L. Robert, I. Bihannic, M. Pelletier, and L.J. Michot, J. Phys. Chem. B 109, 23745 (2005).

    Article  Google Scholar 

  33. J.N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Amsterdam: Elsevier inc, 2011), p. 71.

    Google Scholar 

  34. N. Malikova, A. Cadènea, E. Dubois, V. Marry, S. Durand-Vidal, P. Turq, J. Breu, S. Longeville, and J.M. Zanotti, J. Phys. Chem. C 111, 17603 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of this work from the National Natural Science Foundation of China under the Project Nos. 51474167, 51674183 and 51474011 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxian Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Song, S., Dong, X. et al. Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration. JOM 70, 479–484 (2018). https://doi.org/10.1007/s11837-017-2666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2666-2

Navigation