Skip to main content
Log in

Hydroxyapatite Fibers: A Review of Synthesis Methods

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) exhibits excellent biocompatibility, bioactivity, osteoconductivity, non-toxicity and so on, making it a perfect candidate for biomedical applications. However, HA is not qualified to be used in load-bearing sites due to its poor flexural strength and fracture toughness. Design, synthesis and application of fibrous HA is a promising strategy to overcome the inherent brittleness. This review provides a brief description of HA and hydroxyapatite fiber (HAF), then introduces different synthesis methods of HAF and highlights the inherent merits and drawbacks involved in each method. Finally, the future perspectives in this active research area are given. The purpose of this review is to acquaint the reader with this promising new field of biomaterials research and with emphasis on recent techniques to obtain continuous, uniform and long HAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.V. Dorozhkin, J. Funct. Biomater. 1, 22 (2010).

    Article  Google Scholar 

  2. M. Parent, H. Baradari, E. Champion, C. Damia, and M. Viana-Trecant, J. Controll. Release 252, 1 (2017).

    Article  Google Scholar 

  3. M. Jarcho, Clin. Orthop. Relat. Res. 157, 259 (1981).

    Google Scholar 

  4. L.L. Hench and J.M. Polak, Science 295, 1014 (2002).

    Article  Google Scholar 

  5. C. Rey, C. Combes, C. Drouet, S. Cazalbou, D. Grossin, F. Brouillet, and S. Sarda, Prog. Cryst. Growth Charact. Mater. 60, 63 (2014).

    Article  Google Scholar 

  6. M. Pasero, A.R. Kampf, C. Ferraris, I.V. Pekov, J. Rakovan, and T.J. White, Eur. J. Mineral. 22, 163 (2010).

    Article  Google Scholar 

  7. S. Onder, A.C. Calikoglu-Koyuncu, G.T. Kose, K. Kazmanli, F.N. Kok, and M. Urgen, JOM 69, 1195 (2017).

    Article  Google Scholar 

  8. H. Liu, W. Jiang, and A. Malshe, JOM 61, 67 (2009).

    Google Scholar 

  9. J. Li, Y. Song, S. Zhang, C. Zhao, F. Zhang, X. Zhang, L. Cao, Q. Fan, and T. Tang, Biomaterials 31, 5782 (2010).

    Article  Google Scholar 

  10. P. Venkatesan, N. Puvvada, R. Dash, B.P. Kumar, D. Sarkar, B. Azab, A. Pathak, S.C. Kundu, P.B. Fisher, and M. Mandal, Biomaterials 32, 3794 (2011).

    Article  Google Scholar 

  11. M. Vallet-Regí and J.M. González-Calbet, Prog. Solid State Chem. 32, 1 (2004).

    Article  Google Scholar 

  12. L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991).

    Article  Google Scholar 

  13. M.-L. Qi, J. Qi, G.-Y. Xiao, and Y.-P. Lv, J. Inorg. Mater. 7, 726 (2016).

    Google Scholar 

  14. K. Balani, D. Lahiri, A. Keshri, S. Bakshi, J.E. Tercero, and A. Agarwal, JOM 61, 63 (2009).

    Article  Google Scholar 

  15. N. Eslami, R. Mahmoodian, M. Hamdi, N.M. Khatir, M. Herliansyah, and A.R. Rafieerad, JOM 69, 691 (2017).

    Article  Google Scholar 

  16. C. Canal and M. Ginebra, J. Mech. Behav. Biomed. Mater. 4, 1658 (2011).

    Article  Google Scholar 

  17. R. Krüger and J. Groll, Biomaterials 33, 5887 (2012).

    Article  Google Scholar 

  18. R. Doremus, J. Mater. Sci. 27, 285 (1992).

    Article  Google Scholar 

  19. V. Orlovskii, V. Komlev, and S. Barinov, Inorg. Mater. 38, 973 (2002).

    Article  Google Scholar 

  20. S.V. Dorozhkin, Acta Biomater. 6, 715 (2010).

    Article  Google Scholar 

  21. H. Zhou and J. Lee, Acta Biomater. 7, 2769 (2011).

    Article  Google Scholar 

  22. M. Okada and T. Furuzono, Sci. Technol. Adv. Mater. 13, 064103 (2012).

    Article  Google Scholar 

  23. S. Pramanik, A.K. Agarwal, K. Rai, and A. Garg, Ceram. Int. 33, 419 (2007).

    Article  Google Scholar 

  24. H. Iwasaki, Ceram. Jpn. 24, 295 (1989).

    Google Scholar 

  25. Y. Ota, T. Iwashita, T. Kasuga, and Y. Abe, J. Am. Ceram. Soc. 81, 1665 (1998).

    Article  Google Scholar 

  26. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, Acta Biomater. 9, 7591 (2013).

    Article  Google Scholar 

  27. K. Lin, C. Wu, and J. Chang, Acta Biomater. 10, 4071 (2014).

    Article  Google Scholar 

  28. A.C. Taş, J. Am. Ceram. Soc. 84, 295 (2001).

    Google Scholar 

  29. H.G. Zhang and Q. Zhu, J. Mater. Sci. Mater. Med. 17, 691 (2006).

    Article  Google Scholar 

  30. S. Ramos, M. Motisuke, L. Rodrigues, and C.A. Zavaglia, Key Eng. Mater. 396, 497 (2009).

    Article  Google Scholar 

  31. G. Gergely, F. Wéber, I. Lukács, A.L. Tóth, Z.E. Horváth, J. Mihály, and C. Balázsi, Ceram. Int. 36, 803 (2010).

    Article  Google Scholar 

  32. S. Suzuki, M. Ohgaki, M. Ichiyanagi, and M. Ozawa, J. Mater. Sci. Lett. 17, 381 (1998).

    Article  Google Scholar 

  33. H. Zhang, Y. Wang, Y. Yan, and S. Li, Ceram. Int. 29, 413 (2003).

    Article  Google Scholar 

  34. Z. Hongquan, Y. Yuhua, W. Youfa, and L. Shipu, Mater. Res. 6, 111 (2003).

    Article  Google Scholar 

  35. D.S. Seo and J.K. Lee, J. Cryst. Growth 310, 2162 (2008).

    Article  Google Scholar 

  36. J. Yuan, Y. Wu, Q.X. Zheng, and X.L. Xie, Adv. Mater. Res. 160, 1301 (2011).

    Google Scholar 

  37. B. Viswanath and N. Ravishankar, Biomaterials 29, 4855 (2008).

    Article  Google Scholar 

  38. Z.H. Zhang, Z.L. Huang, H.B. Shi, R.A. Chi, J.Q. Li, and N. Sun, J. Alloys Compd. 486, 415 (2009).

    Article  Google Scholar 

  39. S. Gao, K. Sun, A. Li, and H. Wang, Mater. Res. Bull. 48, 1003 (2013).

    Article  Google Scholar 

  40. M. Jarcho, C. Bolen, M. Thomas, J. Bobick, J. Kay, and R.H. Doremus, J. Mater. Sci. 11, 2027 (1976).

    Article  Google Scholar 

  41. M. Akao, H. Aoki, and K. Kato, J. Mater. Sci. 16, 809 (1981).

    Article  Google Scholar 

  42. E.S. Ahn, N.J. Gleason, A. Nakahira, and J.Y. Ying, Nano Lett. 1, 149 (2001).

    Article  Google Scholar 

  43. I.R. Gibson and W. Bonfield, J. Biomed. Mater. Res. 59, 697 (2002).

    Article  Google Scholar 

  44. C. Verwilghen, M. Chkir, S. Rio, A. Nzihou, P. Sharrock, and G. Depelsenaire, Mater. Sci. Eng. C 29, 771 (2009).

    Article  Google Scholar 

  45. P.N. Kumta, C. Sfeir, D.-H. Lee, D. Olton, and D. Choi, Acta Biomater. 1, 65 (2005).

    Article  Google Scholar 

  46. M. Yoshimura, H. Suda, K. Okamoto, and K. Ioku, J. Mater. Sci. 29, 3399 (1994).

    Article  Google Scholar 

  47. N. Asaoka, H. Suda, and M. Yoshimura, Nippon Kagaku Kaishi 1, 25 (1995).

    Article  Google Scholar 

  48. C. Li, S. Liu, G. Li, W. Wang, and Q. Du, Adv. Powder Technol. 22, 537 (2011).

    Article  Google Scholar 

  49. L. An, W. Li, Y. Xu, D. Zeng, Y. Cheng, and G. Wang, Ceram. Int. 42, 3104 (2016).

    Article  Google Scholar 

  50. H. Li, L. Mei, H. Liu, Y. Liu, L. Liao, and R.V. Kumar, Cryst. Growth Des. 17, 2809 (2017).

    Article  Google Scholar 

  51. A.J. Nathanael, S.I. Hong, T.H. Oh, Y.H. Seo, D. Singh, and S.S. Han, RSC Adv. 6, 25070 (2016).

    Article  Google Scholar 

  52. Y. Mizutani, M. Hattori, M. Okuyama, T. Kasuga, and M. Nogami, J. Eur. Ceram. Soc. 25, 3181 (2005).

    Article  Google Scholar 

  53. D.O. Costa, S.J. Dixon, and A.S. Rizkalla, ACS Appl. Mater. Interfaces 4, 1490 (2012).

    Article  Google Scholar 

  54. J.W. Cahn, Acta Metall. 8, 554 (1960).

    Article  Google Scholar 

  55. X.-Y. Zhao, Y.-J. Zhu, F. Chen, B.-Q. Lu, C. Qi, J. Zhao, and J. Wu, CrystEngComm 15, 7926 (2013).

    Article  Google Scholar 

  56. J. Di Chen, Y.J. Wang, K. Wei, S.H. Zhang, and X.T. Shi, Biomaterials 28, 2275 (2007).

    Article  Google Scholar 

  57. M.-L. Qi, G.-Y. Xiao, and Y.-P. Lu, Acta Metall. Sin. (Engl. Lett.) 29, 609 (2016).

    Article  Google Scholar 

  58. M. Aizawa, H. Ueno, K. Itatani, and I. Okada, J. Eur. Ceram. Soc. 26, 501 (2006).

    Article  Google Scholar 

  59. I.S. Neira, Y.V. Kolen’ko, O.I. Lebedev, G. Van Tendeloo, H.S. Gupta, F. Guitián, and M. Yoshimura, Cryst. Growth Des. 9, 466 (2008).

    Article  Google Scholar 

  60. A. Yasukawa, H. Takase, K. Kandori, and T. Ishikawa, Polyhedron 13, 3041 (1994).

    Article  Google Scholar 

  61. A. Yasukawa, T. Yokoyama, and T. Ishikawa, Mater. Res. Bull. 36, 775 (2001).

    Article  Google Scholar 

  62. K. Kieswetter, T. Bauer, S. Brown, F. Van Lente, and K. Merritt, Biomaterials 15, 183 (1994).

    Article  Google Scholar 

  63. I.S. Neira, F. Guitián, T. Taniguchi, T. Watanabe, and M. Yoshimura, J. Mater. Sci. 43, 2171 (2008).

    Article  Google Scholar 

  64. H. Zhang and B.W. Darvell, Acta Biomater. 6, 3216 (2010).

    Article  Google Scholar 

  65. H. Zhang and B.W. Darvell, J. Eur. Ceram. Soc. 30, 2041 (2010).

    Article  Google Scholar 

  66. M.-L. Qi, G.-Y. Xiao, T. Shokuhfar, and Y.-P. Lu, Surf. Innov. 5, 75 (2017).

    Article  Google Scholar 

  67. R.L. Penn and J.F. Banfield, Geochim. Cosmochim. Acta 63, 1549 (1999).

    Article  Google Scholar 

  68. T. Sugimoto, Adv. Colloid Interface Sci. 28, 65 (1987).

    Article  Google Scholar 

  69. K. Sawada, Pure Appl. Chem. 69, 921 (1997).

    Article  Google Scholar 

  70. M.T. Fulmer and P. Brown, J. Mater. Sci. Mater. Med. 9, 197 (1998).

    Article  Google Scholar 

  71. H. Monma, J. Mater. Sci. 15, 2428 (1980).

    Article  Google Scholar 

  72. K. Ioku, S. Yamauchi, H. Fujimori, S. Goto, and M. Yoshimura, Solid State Ion. 151, 147 (2002).

    Article  Google Scholar 

  73. L. Hao, H. Yang, N. Zhao, C. Du, and Y. Wang, Powder Technol. 253, 172 (2014).

    Article  Google Scholar 

  74. J. Yang, J.-H. Zeng, S.-H. Yu, L. Yang, G.-E. Zhou, and Y.-T. Qian, Chem. Mater. 12, 3259 (2000).

    Article  Google Scholar 

  75. S.-H. Yu, J. Yang, Z.-H. Han, Y. Zhou, R.-Y. Yang, Y.-T. Qian, and Y.-H. Zhang, J. Mater. Chem. 9, 1283 (1999).

    Article  Google Scholar 

  76. K. Wei, C. Lai, and Y. Wang, J. Macromol. Sci. A 43, 1531 (2006).

    Article  Google Scholar 

  77. Y.J. Wang, C. Lai, K. Wei, X. Chen, Y. Ding, and Z.L. Wang, Nanotechnology 17, 4405 (2006).

    Article  Google Scholar 

  78. T.-W. Sun, Y.-J. Zhu, and F. Chen, Chem. Eur. J. 1, 23 (2017).

    Google Scholar 

  79. Y.-Y. Jiang, Y.-J. Zhu, F. Chen, and J. Wu, Ceram. Int. 41, 6098 (2015).

    Article  Google Scholar 

  80. Y.-G. Zhang, Y.-J. Zhu, F. Chen, and J. Wu, Mater. Lett. 144, 135 (2015).

    Article  Google Scholar 

  81. W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, and J.C. Nino, J. Am. Ceram. Soc. 89, 395 (2006).

    Article  Google Scholar 

  82. R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, J. Appl. Phys. 102, 7 (2007).

    Article  Google Scholar 

  83. D. Li and Y. Xia, Adv. Mater. 16, 1151 (2004).

    Article  Google Scholar 

  84. X. Dai and S. Shivkumar, J. Am. Ceram. Soc. 90, 1412 (2007).

    Article  Google Scholar 

  85. Z. Hou, P. Yang, H. Lian, L. Wang, C. Zhang, C. Li, R. Chai, Z. Cheng, and J. Lin, Chem. Eur. J. 15, 6973 (2009).

    Article  Google Scholar 

  86. Y. Wu, L.L. Hench, J. Du, K.L. Choy, and J. Guo, J. Am. Ceram. Soc. 87, 1988 (2004).

    Article  Google Scholar 

  87. H.W. Kim and H.E. Kim, J. Biomed. Mater. Res. B 77, 323 (2006).

    Article  Google Scholar 

  88. H.W. Kim, J.H. Song, and H.E. Kim, Adv. Funct. Mater. 15, 1988 (2005).

    Article  Google Scholar 

  89. P. Franco, C. João, J. Silva, and J. Borges, Mater. Lett. 67, 233 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Fundamental Research Funds of Shandong University (2016JC024) and Suzhou Science and Technology Bureau (SYG201615). Additional support was obtained from the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Peng Lu or Tolou Shokuhfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, ML., He, K., Huang, ZN. et al. Hydroxyapatite Fibers: A Review of Synthesis Methods. JOM 69, 1354–1360 (2017). https://doi.org/10.1007/s11837-017-2427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2427-2

Navigation