Skip to main content
Log in

Microwave Power Absorption in Materials for Ferrous Metallurgy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The characteristics of microwave power absorption in materials for ferrous metallurgy, including iron oxides (Fe2O3, Fe3O4 and Fe0.925O) and bitumite, were explored by evaluating their dielectric loss (Q E) and/or magnetic loss (Q H) distributions in the 0.05-m-thick slabs of the corresponding materials exposed to 1.2-kW and 2.45-GHz microwave radiation at temperatures below 1100°C. It is revealed that the dielectric loss contributes primarily to the power absorption in Fe2O3, Fe0.925O and the bitumite at all of the examined temperatures. Their Q E values at room temperature and slab surface are 9.1311 × 103 W m−3, 23.7025 × 103 W m−3, and 49.5999 × 103 W m−3, respectively, showing that the materials have the following heating rate initially under microwave irradiation: bitumite > Fe0.925O > Fe2O3. Compared with the other materials, Fe3O4 has much stronger power absorption, primarily originated from its magnetic loss (e.g., Q H = 1.0615 × 106 W m−3, Q H/Q E = 2.4185 at 24°C and slab surface), below its Curie point, above which the magnetic susceptibility approaches to zero, thereby causing a very small Q H value at even the surface (Q H = 1.0416 × 105 W m−3 at 880°C). It is also demonstrated that inhomogeneous power distributions occur in all the slabs and become more pronounced with increasing temperature mainly due to rapid increase in permittivity. Characterizing power absorption in the oxides and the coal is expected to offer a strategic guide for improving use of microwave energy in ferrous metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

D p :

Microwave penetration depth (m)

E :

Microwave electric field (V m−1)

E 0 :

Incident microwave electric field strength (V m−1, E 0 = 4754 V m−1 in this study)

H :

Microwave magnetic field (A m−1)

L :

Slab thickness (m)

Q E :

Dielectric loss (W m−3)

Q H :

Magnetic loss (W m−3)

R :

Reflection coefficient at the interface between free space and material (abs, dimensionless)

T :

Transmission coefficient at the interface between free space and material (abs, dimensionless, T = 1 − R)

x :

Coordinate (m)

y :

Coordinate (m)

z :

Coordinate/depth or distance from surface into slab (m)

z e :

Equivalent depth at which power drops to 1/e from its value at slab surface (m)

z e,E :

Equivalent depth at which dielectric loss drops to 1/e from its value at slab surface (m)

z e,H :

Equivalent depth at which magnetic loss drops to 1/e from its value at slab surface (m)

α :

Field attenuation factor (Np m−1)

β :

Phase constant (rad m−1)

δ :

Phase angle of reflection coefficient (Arg, rad)

ε 0 :

Permeability of free space (8.854 × 10−12 F m−1)

\( \varepsilon_{\text{r}}^{\prime } \) :

Real part of complex relative permittivity of material (relative dielectric constant, dimensionless)

\( \varepsilon_{\text{r}}^{\prime \prime } \) :

Imaginary part of complex relative permittivity of material (relative dielectric loss factor, dimensionless)

η :

Characteristic impendence of material [Ω, η = (μ/ε)1/2]

μ 0 :

Permeability of free space (4π × 10−7 H m−1)

\( \mu_{\text{r}}^{\prime } \) :

Real part of complex relative permeability of material (relative magnetic constant, dimensionless)

\( \mu_{\text{r}}^{{\prime \prime }} \) :

Imaginary part of complex relative permeability of material (relative magnetic loss factor, dimensionless)

τ :

Phase angle of transmission coefficient (Arg, rad)

ω :

Angular frequency (rad m−1)

References

  1. Yu.V. Bykov, K.I. Rybakov, and V.E. Semenov, J. Phys. D Appl. Phys. 34, R55 (2001).

    Article  Google Scholar 

  2. S.W. Kingman, Int. Mater. Rev. 51, 1 (2006).

    Article  Google Scholar 

  3. S. Chandrasekaran, S. Ramanathan, and T. Basak, AIChE J. 58, 330 (2012).

    Article  Google Scholar 

  4. Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2015).

    Article  Google Scholar 

  5. Z. Peng, J.Y. Hwang, and M. Andriese, Appl. Phys. Express 5, 077301 (2012).

    Article  Google Scholar 

  6. Z. Peng, X. Lin, J.Y. Hwang, M. Andriese, Y. Zhang, G. Li, and T. Jiang, J. Microw. Power Electromagn. Energy 50, 153 (2016).

    Article  Google Scholar 

  7. Z. Peng, J.Y. Hwang, and M. Andriese, Ceram. Int. 39, 6721 (2013).

    Article  Google Scholar 

  8. Z. Peng, J.Y. Hwang, M. Andriese, Y. Zhang, G. Li, and T. Jiang, Ceram. Int. 40, 16563 (2014).

    Article  Google Scholar 

  9. Z. Peng, J.Y. Hwang, M. Andriese, Y. Zhang, G. Li, and T. Jiang, Ceram. Int. 41, 3058 (2015).

    Article  Google Scholar 

  10. Z. Peng, J.Y. Hwang, M. Andriese, W. Bell, X. Huang, and X. Wang, ISIJ Int. 51, 884 (2011).

    Article  Google Scholar 

  11. Z. Peng, J.Y. Hwang, C.L. Park, B.G. Kim, and G. Onyedika, Metall. Mater. Trans. A 43A, 1070 (2012).

    Article  Google Scholar 

  12. M. Hotta, M. Hayashi, A. Nishikata, and K. Nagata, ISIJ Int. 49, 1443 (2009).

    Article  Google Scholar 

  13. M. Hotta, M. Hayashi, and K. Nagata, ISIJ Int. 50, 1514 (2010).

    Article  Google Scholar 

  14. M. Hotta, M. Hayashi, and K. Nagata, ISIJ Int. 51, 491 (2011).

    Article  Google Scholar 

  15. Z. Peng, J.Y. Hwang, C.L. Park, B.G. Kim, M. Andriese, and X. Wang, ISIJ Int. 52, 1535 (2012).

    Article  Google Scholar 

  16. Z. Peng, J.Y. Hwang, J. Mouris, R. Hutcheon, and X. Huang, ISIJ Int. 50, 1590 (2010).

    Article  Google Scholar 

  17. Z. Peng, J.Y. Hwang, J. Mouris, R. Hutcheon, and X. Sun, Metall. Mater. Trans. A 42A, 2259 (2011).

    Article  Google Scholar 

  18. Z. Peng, J.Y. Hwang, B.G. Kim, J. Mouris, and R. Hutcheon, Energy Fuel 26, 5146 (2012).

    Article  Google Scholar 

  19. Z. Peng, X. Lin, X. Wu, J.Y. Hwang, B.G. Kim, Y. Zhang, G. Li, and T. Jiang, Fuel Process. Technol. 150, 58 (2016).

    Article  Google Scholar 

  20. Z. Peng, J.Y. Hwang, and M. Andriese, Appl. Phys. Express 5, 027304 (2012).

    Article  Google Scholar 

  21. Z. Peng, J.Y. Hwang, and M. Andriese, IEEE Trans. Magn. 49, 1163 (2013).

    Article  Google Scholar 

  22. Z. Peng, J.Y. Hwang, and M. Andriese, IEEE Trans. Instrum. Meas. 63, 450 (2014).

    Article  Google Scholar 

  23. S.A. Barringer, E.A. Davis, J. Gordon, K.G. Ayappa, and H.T. Davis, J. Food Sci. 60, 1137 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grant 51504297, the Shenghua Lieying Program of Central South University under Grant 502035001, the Innovation-Driven Program of Central South University under Grant 2016CXS021, the Fundamental Research Funds for the Central Universities of Central South University under Grant 2016zzts464, and the Undergraduate Training Program for Innovation and Entrepreneurship of Central South University under Grant YC2016661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Li, Z., Lin, X. et al. Microwave Power Absorption in Materials for Ferrous Metallurgy. JOM 69, 178–183 (2017). https://doi.org/10.1007/s11837-016-2174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2174-9

Keywords

Navigation