Skip to main content
Log in

The Inverse Phase Stability Problem as a Constraint Satisfaction Problem: Application to Materials Design

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In general, the forward phase stability problem consists of mapping thermodynamic conditions (e.g., composition, temperature, pressure) to corresponding equilibrium states. In this paper, we instead focus on the generalized inverse phase stability problem (GIPSP) that deals with mapping a set of phase constitutions to a set of corresponding thermodynamic conditions. Specifically, we define the GIPSP as mapping of sets of phase constitution definitions in a multidimensional phase constitution search space to corresponding ranges of thermodynamic conditions. Mathematically, the solution to the GIPSP corresponds to all solutions to a continuous constraint satisfaction problem (CCSP). We present novel algorithms combining computational thermodynamics, evolutionary computation, and machine learning to approximate solution sets to the GIPSP as a CCSP. Some preliminary examples demonstrating the algorithms are presented. Moreover, the implications of the proposed framework for the larger problem of materials design are discussed, and future work is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Pollock, J.E. Allison, D.G. Backman, M.C. Boyce, M. Gersh, E.A. Holm, R. LeSar, M. Long, A.C. Powell, J.J. Schirra, D.D. Whitis, and C. Woodward, Integrated Computational Materials Engineering: a Transformational Discipline for Improved Competitiveness and National Security (National Academies Press, Washington, DC, 2008)

    Google Scholar 

  2. N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, vol. 1 (Elsevier, New York, 1998)

    Google Scholar 

  3. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, CALPHAD 26(2), 273 (2002)

    Article  Google Scholar 

  4. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer, and W. Oates, CALPHAD 33(2), 328 (2009)

    Article  Google Scholar 

  5. B. Sundman, U.R. Kattner, M. Palumbo, and S.G. Fries, Integr. Mater. Manuf. Innov. 4(1), 1 (2015)

    Article  Google Scholar 

  6. A.E. Gheribi, C. Audet, S. Le Digabel, E. Bélisle, C. Bale, and A. Pelton, CALPHAD 36, 135 (2012)

    Article  Google Scholar 

  7. A.E. Gheribi, C. Robelin, S. Le Digabel, C. Audet, and A.D. Pelton, J. Chem. Thermodyn. 43(9), 1323 (2011)

    Article  Google Scholar 

  8. T. Gomez-Acebo, M. Sarasola, and F. Castro, CALPHAD 27(3), 325 (2003)

    Article  Google Scholar 

  9. H. Du and J. Morral, J. Alloys Compd. 247(1), 122 (1997)

    Article  Google Scholar 

  10. E. Tsang, Foundations of Constraint Satisfaction (Academic, London, 1995)

    Google Scholar 

  11. J. Cruz, Proceedings of the 2005 Conference on Constraint Reasoning for Differential Models, (IOS Press, Amsterdam, 2005), pp. 1–216

  12. E. Galvan, R.J. Malak, S. Gibbons, and R. Arroyave, ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2014), pp. V02BT03A010–V02BT03A010

  13. M.L. Ginsberg and W.D. Harvey, Artif. Intell. 55(2), 367 (1992)

    Article  MathSciNet  Google Scholar 

  14. W.D. Harvey and M.L. Ginsberg, in IJCAI (1) (1995), pp. 607–615

  15. S.W. Golomb and L.D. Baumert, J. ACM 12(4), 516 (1965)

    Article  MathSciNet  Google Scholar 

  16. D. Sam-Haroud and B. Faltings, Constraints 1(1–2), 85 (1996)

    Article  MathSciNet  Google Scholar 

  17. J. Hu, M. Aminzadeh and Y. Wang, J. Mech. Des. 136(3), 031002 (2014)

    Article  Google Scholar 

  18. A.M. Zalzala and P.J. Fleming (eds.), Genetic Algorithms in Engineering Systems, Control Engineering Series 55 (Institution of Electrical Engineers, London, 1997)

    Google Scholar 

  19. D.M. Tax and R.P. Duin, Pattern Recognit. Lett. 20(11), 1191 (1999)

    Article  Google Scholar 

  20. E. Galvan, S. Gibbons, R. Arroyave, and R.J. Malak, Texas A&M University, unpublished research, 2016

  21. C.M. Fonseca, J.D. Knowles, L. Thiele, and E. Zitzler, Third International Conference on Evolutionary Multi-Criterion Optimization (EMO) (2005), Vol. 216, pp. 240

  22. H. Kanoh, M. Matsumoto, and S. Nishihara, IEEE International Conference on Intelligent Systems for the 21st Century on Systems, Man and Cybernetics, 1995, Vol. 1 (IEEE, 1995), pp. 626–631

  23. E. Galvan and R. Malak, ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2012), pp. 777–788

  24. T. Poggio and G. Cauwenberghs, Adv. Neural Inform. Process Syst. 13, 409 (2001)

    Google Scholar 

  25. E. Roach, R.R. Parker, R.J. Malak, ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2011), pp. 741–751

  26. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, IEEE Trans Evol. Comput. 6(2), 182 (2002)

    Article  Google Scholar 

  27. K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, vol. 16 (Wiley, New York, 2001)

    MATH  Google Scholar 

  28. K. Ishida, J. Alloys Compd. 220(1), 126 (1995)

    Article  Google Scholar 

  29. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation and the Air Force under Grant EFRI-1240483. The authors would like to thank Paul Mason from Thermo-Calc for providing the thermodynamic dataset. R.A. acknowledges the partial support of NSF under Grant NSF-CMMI-1534534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arróyave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arróyave, R., Gibbons, S.L., Galvan, E. et al. The Inverse Phase Stability Problem as a Constraint Satisfaction Problem: Application to Materials Design. JOM 68, 1385–1395 (2016). https://doi.org/10.1007/s11837-016-1858-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1858-5

Keywords

Navigation