Skip to main content
Log in

In Situ X-Ray Observations of Dendritic Fragmentation During Directional Solidification of a Sn-Bi Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Dendrite fragmentation is an important phenomenon in microstructural development during solidification. For instance, it plays a key role in initiating the columnar-to-equiaxed transition (CET). Here, we use x-ray radiography to study dendrite fragmentation rate in a Sn-39.5 wt.% Bi alloy during directional solidification. Experiments were performed in which solidification was parallel and anti-parallel to gravity, leading to significantly different fragmentation rates. We quantify the distribution of fragmentation rate as a function of distance from the solidification front, time in the mushy zone, and volume fraction of solid. While the observed fragmentation rate can be high, there is no evidence of a CET, illustrating that it requires more than just fragmentation to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.C. Flemings, Solidification Processing (New York: McGraw-Hill, 1974), p. 134.

    Google Scholar 

  2. A. Hellawell, S. Liu, and S.Z. Lu, JOM 49, 18 (1997).

    Article  Google Scholar 

  3. J. Vreeman, M.J.M. Krane, and F.P. Incropera, Int. J. Heat Mass Transf. 43, 677 (2000).

    Article  MATH  Google Scholar 

  4. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche, Adv. Eng. Mater. 5, 81 (2003).

    Article  Google Scholar 

  5. T.E. Quested, Mater. Sci. Technol. 20, 1357 (2004).

    Article  Google Scholar 

  6. A. de Bussac and Ch.-A. Gandin, Mat. Sci. Eng. A 237, 35 (1997).

    Article  Google Scholar 

  7. D.M. Herlach, K. Eckler, A. Karma, and M. Schwarz, Mat. Sci. Eng. A 304–306, 20 (2001).

    Article  Google Scholar 

  8. A. Papapetrou, Z. Krist. 92, 2 (1935).

    Google Scholar 

  9. R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, and A. Snigirev, Phys. Rev. Lett. 83, 5062 (1999).

    Article  Google Scholar 

  10. R.H. Mathiesen, L. Arnberg, K. Ramsøskar, T. Weitkamp, C. Rau, and A. Snigirev, Met. Mat. Trans. B 33, 613 (2002).

    Article  Google Scholar 

  11. R.H. Mathiesen and L. Arnberg, Acta Mater. 53, 947 (2005).

    Article  Google Scholar 

  12. R.H. Mathiesen, L. Arnberg, P. Bleuet, and A. Somogyi, Met. Mater. Trans. A 37, 2515 (2006).

    Article  Google Scholar 

  13. H. Yasuda, I. Ohnaka, K. Kawasaki, A. Sugiyama, T. Ohmichi, J. Iwane, and K. Umetani, J. Cryst. Growth 262, 645 (2004).

    Article  Google Scholar 

  14. G. Reinhart, N. Mangelinck-Noel, H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, J. Hartwig, and J. Baruchel, Mat. Sci. Eng. A 413, 384 (2005).

    Article  Google Scholar 

  15. L. Arnberg and R.H. Mathiesen, JOM 59, 1543 (2007).

    Article  Google Scholar 

  16. D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman, Acta Mater. 55, 4287 (2007).

    Article  Google Scholar 

  17. S. Boden, B. Willers, S. Eckert, and G. Gerbeth, Int. J. Cast. Met. Res. 22, 30 (2009).

    Article  Google Scholar 

  18. E. Liotti, A. Lui, R. Vincent, S. Kumar, Z.P. Guo, T. Connolley, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant, Mat. Sci. Forum 765, 210 (2013).

    Article  Google Scholar 

  19. E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant, Acta Mater. 70, 228 (2014).

    Article  Google Scholar 

  20. H. Yasuda, Y. Yamamoto, N. Nakatsuka, M. Yoshiya, T. Nagira, A. Sugiyama, I. Ohnaka, K. Uesugi, and K. Umetani, Int. J. Cast Met. Res. 22, 15 (2009).

    Article  Google Scholar 

  21. G. Reinhart, A. Buffet, H. Nguyen-Thi, B. Billia, H. Jung, N. Mangelinck-Noel, N. Bergeon, T. Schenk, J. Härtwig, and J. Baruchel, Met. Mater. Trans. A 39, 865 (2008).

    Article  Google Scholar 

  22. G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, J. Baruchel, and B. Billia, JOM 66, 1408 (2014).

    Article  Google Scholar 

  23. T.Z. Kattamis, J.C. Coughlin, and M.C. Flemings, AIME Met. Soc. Trans. 239, 1504 (1967).

    Google Scholar 

  24. M. Kahlweit, Scr. Met. 2, 251 (1968).

    Article  Google Scholar 

  25. M. Schwarz, A. Karma, K. Eckler, and D.M. Herlach, Phys. Rev. Lett. 73, 1380 (1994).

    Article  Google Scholar 

  26. A. Kumar and P. Dutta, J. Phys. D Appl. Phys. 41, 15501 (2008).

    Article  Google Scholar 

  27. A.J. Clarke, D. Tourret, S.D. Imhoff, P.J. Gibbs, K. Fezzaa, J.C. Cooley, W.-K. Lee, A. Deriy, B.M. Patterson, P.A. Papin, K.D. Clarke, R.D. Field, and J.L. Smith, Adv. Eng. Mat. 17, 454 (2015).

    Article  Google Scholar 

  28. E.B. Gulsoy, J.P. Simmons, and M. De Graef, Scr. Mater. 60, 381 (2009).

    Article  Google Scholar 

  29. W.S. Rasband, ImageJ U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/. 1997–2014. Accessed Feb 2015.

  30. S.R. Coriell, M.R. Cordes, W.J. Boettinger, and R.F. Sekerka, J. Cryst. Growth 49, 13 (1980).

    Article  Google Scholar 

  31. W.U. Mirihanage, K.V. Falch, I. Snigireva, A. Snigirev, Y.J. Li, L. Arnberg, and R.H. Mathiesen, Acta Mater. 81, 241 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T.V. Beard, R.W. Hudson, B.S. Folks, D.A. Aragon, K.D. Clarke (LANL), and Alex Deriy (APS) for their support with experiment preparations. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under AJC’s Early Career Award. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357 and Los Alamos National Laboratory, operated by Los Alamos National Security, LLC under contract DE-AC52-06NA25396 for the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Gibbs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibbs, J.W., Tourret, D., Gibbs, P.J. et al. In Situ X-Ray Observations of Dendritic Fragmentation During Directional Solidification of a Sn-Bi Alloy. JOM 68, 170–177 (2016). https://doi.org/10.1007/s11837-015-1646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1646-7

Keywords

Navigation