Skip to main content
Log in

Optimization of Soft Magnetic Properties in Nanocrystalline Fe-Rich Glass-Coated Microwires

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We have studied Hitperm-type and Finemet-type glass-coated microwires with a nanocrystalline structure. In Hitperm-type microwires where the nanocrystalline structure has been obtained directly after melt quenching using the Taylor–Ulitovsky fabrication technique, we observed rectangular hysteresis loops and studied the domain wall propagation. We measured and analyzed the switching field dependence on the frequency in as-prepared and annealed Hitperm-type microwires. A conventional annealing results in a drastic change of the frequency dependence of the switching field. This effect might be interpreted considering the stress relaxation process. We have also studied the correlation of magnetic properties, structure, and giant magnetoimpedance (GMI) effect in Finemet-type FeCuNbSiB microwires prepared by the Taylor–Ulitovsky technique. We observed that both GMI effect and magnetic softness of Finemet-type glass-coated microwires can be tailored by heat treatment, and after annealing a considerable magnetic softening of studied samples has been achieved. This magnetic softening correlates well with the devitrification of amorphous samples. Amorphous Fe-rich microwires exhibit a low GMI effect (GMI ratio below 1%). A considerable enhancement of the GMI effect (GMI ratio up to 100%) has been observed in heat-treated microwires developing a nanocrystalline structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, Phys. Status Solidi A 208, 493 (2011).

    Article  Google Scholar 

  2. F. Qin and H.-X. Peng, Progr. Mater. Sci. 58, 183 (2013).

    Article  Google Scholar 

  3. L.V. Panina, K. Mohri, T. Uchyama, and M. Noda, IEEE Trans. Magn. 31, 1249 (1995).

    Article  Google Scholar 

  4. A. Zhukov and V. Zhukova (Paper presented at the International Frequency Sensor Association (IFSA) Publishing, Barcelona, Spain, 2014).

  5. A.P. Zhukov, M. Vázquez, J. Velázquez, H. Chiriac, and V. Larin, J. Magn. Magn. Mater. 151, 132 (1995).

    Article  Google Scholar 

  6. M. Vázquez, J.M. García-Beneytez, J.M. García, J.P. Sinnecker, and A. Zhukov, J. Appl. Phys. 88, 6501 (2000).

    Article  Google Scholar 

  7. J. Velázquez, M. Vazquez, and A. Zhukov, J. Mater. Res. 11, 2499 (1996).

    Article  Google Scholar 

  8. H. Chiriac, T.A. Ovari, and A. Zhukov, J. Magn. Magn. Mater. 254, 469 (2003).

    Article  Google Scholar 

  9. L.V. Panina and K. Mohri, Appl. Phys. Lett. 65, 1189 (1994).

    Article  Google Scholar 

  10. R. Beach and A. Berkowitz, Appl. Phys. Lett. 64, 3652 (1994).

    Article  Google Scholar 

  11. V. Zhukova, A. Chizhik, A. Zhukov, A. Torcunov, V. Larin, and J. Gonzalez, IEEE Trans. Magn. 38, 3090 (2002).

    Article  Google Scholar 

  12. K.R. Pirota, L. Kraus, H. Chiriac, and M. Knobel, J. Magn. Magn. Mater. 221, L243 (2000).

    Article  Google Scholar 

  13. T. Uchiyama, K. Mohri, and Sh Nakayama, IEEE Trans. Magn. 47, 3070 (2011).

    Article  Google Scholar 

  14. L. Ding, S. Saez, C. Dolabdjian, L.G.C. Melo, A. Yelon, and D. Ménard, IEEE Sens. 9, 159 (2009).

    Article  Google Scholar 

  15. Y. Honkura, J. Magn. Magn. Mater. 249, 375 (2002).

    Article  Google Scholar 

  16. S. Gudoshnikov, N. Usov, A. Nozdrin, M. Ipatov, A. Zhukov, and V. Zhukova, Phys. Stat. Solidi (a) 211, 980 (2014).

    Article  Google Scholar 

  17. L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, and J. Gonzalez, Appl. Phys. A 103, 653 (2011).

    Article  Google Scholar 

  18. H.X. Peng, F.X. Qin, M.H. Phan, J. Tang, L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, and J. Gonzalez, J. Non-Cryst. Solids 355, 1380 (2009).

    Article  Google Scholar 

  19. D. Makhnovskiy, A. Zhukov, V. Zhukova, and J. Gonzalez, Adv. Sci. Tech. 54, 201 (2008).

    Article  Google Scholar 

  20. A. Zhukov, M. Ipatov, A. Talaat, M. Churyukanova, S. Kaloshkin, and V. Zhukova, Appl. Phys. A 115, 547 (2014).

    Article  Google Scholar 

  21. V. Zhukova, A.F. Cobeño, A. Zhukov, J.M. Blanco, V. Larin, and J. Gonzalez, Nanostruct. Mater. 11, 1319 (1999).

    Article  Google Scholar 

  22. C. Dudek, A.L. Adenot-Engelvin, F. Bertin, and O. Acher, J. Non-Cryst. Solids 353, 925 (2007).

    Article  Google Scholar 

  23. J. Arcas, C. Gómez-Polo, A. Zhukov, M. Vázquez, V. Larin, and A. Hernando, Nanostruct. Mater. 7, 823 (1996).

    Article  Google Scholar 

  24. H. Chiriac, T.A. Ovari, and C.S. Marinescu, J. Appl. Phys. 83, 6584 (1998).

    Article  Google Scholar 

  25. H.Q. Guo, H. Kronmüller, T. Dragon, Z.H. Cheng, and B.G. Shen, J. Appl. Phys. 89, 514 (2001).

    Article  Google Scholar 

  26. A.P. Zhukov, A. Talaat, M. Ipatov, J.M. Blanco, L. Gonzalez-Legarreta, B. Hernando, and V. Zhukova, IEEE Trans. Magn. 50, 2501905 (2014).

    Google Scholar 

  27. A. Talaat, V. Zhukova, M. Ipatov, J.M. Blanco, L. Gonzalez-Legarreta, B. Hernando, J.J. del Val, J. Gonzalez, and A. Zhukov, J. Appl. Phys. 115, 17A313 (2014).

    Article  Google Scholar 

  28. Y. Yoshizawa and K. Yamauchi, Mater. Trans. JIM 31, 307 (1990).

    Article  Google Scholar 

  29. G. Herzer, J. Magn. Magn. Mater. 294, 99 (2005).

    Article  Google Scholar 

  30. M.A. Willard, M.-Q. Huang, D.E. Laughlin, M.E. McHenry, J.O. Cross, V.G. Harris, and C. Franchetti, J. Appl. Phys. 85, 4421 (1999).

    Article  Google Scholar 

  31. I. Škorvánek, P. Švec, J. Marcin, J. Kováč, T. Krenický, and M. Deanko, Phys. Status Solidi (a) 196, 217 (2003).

    Article  Google Scholar 

  32. C. García, V. Zhukova, J. Gonzalez, J.M. Blanco, and A. Zhukov, Physica B 403, 286 (2008).

    Article  Google Scholar 

  33. P. Klein, R. Varga, and M. Vazquez, J. Alloys Compd. 550, 31 (2013).

    Article  Google Scholar 

  34. A. Zhukov, A. Talaat, M. Ipatov, and V. Zhukova (Paper presented at the Proceedings of the 8th International Conference on Sensing Technology, Liverpool, U.K., 2–4 September 2014), pp. 624–629.

  35. V.S. Larin, A.V. Torcunov, A. Zhukov, J. González, M. Vazquez, and L. Panina, J. Magn. Magn. Mater. 249, 39 (2002).

    Article  Google Scholar 

  36. K.J. Sixtus and L. Tonks, Phys. Rev. 42, 419 (1932).

    Article  Google Scholar 

  37. A. Zhukov, J.M. Blanco, M. Ipatov, A. Chizhik, and V. Zhukova, Nanoscale Res. Lett. 7, 223 (2012).

    Article  Google Scholar 

  38. M. Ipatov, V. Zhukova, J. Gonzalez, and A. Zhukov, Appl. Phys. Lett. 97, 252507 (2010).

    Article  Google Scholar 

  39. A. Zhukov, A. Talaat, M. Ipatov, J.J. del Val, L. Gonzalez-Legarreta, B. Hernando, and V. Zhukova, J. Electron. Mater. 43, 4540 (2014).

    Article  Google Scholar 

  40. H.Y. Tong, B.Z. Ding, H.G. Jiang, K. Lu, J.T. Wang, and Z.Q. Hu, J. Appl. Phys. 75, 654 (1994).

    Article  Google Scholar 

  41. L. Onsager, Phys. Rev. 37, 405 (1931).

    Article  Google Scholar 

  42. A. Zhukov, M. Vázquez, J. Velázquez, C. Garcia, R. Valenzuela, and B. Ponomarev, J. Mater. Sci. Eng. A 226–228, 753 (1997).

    Article  Google Scholar 

  43. A.P. Zhukov and B.K. Ponomarev, Phys. Status Solidi (a) 112, k127 (1989).

    Article  Google Scholar 

  44. V. Rodionova, M. Ipatov, M. Ilyn, V. Zhukova, N. Perov, J. Gonzalez, and A. Zhukov, J. Supercond. Nov. Magn. 24, 541 (2011).

    Article  Google Scholar 

  45. A. Zhukov, J.M. Blanco, M. Ipatov, and V. Zhukova, Sens. Lett. 11, 170 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under Project MAT2013-47231-C2-1-P and MAT2013-48054-C2-2-R, by the Basque Government under SAIOTEK 13 PROMAGMI (S-PE13UN014) and DURADMAG (S-PE13UN007) Projects, by the MISIS Project under Grant K3-2015-023 and by Slovak APVV-0027-11 Project. Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ERDF, and ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zhukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, V., Talaat, A., Ipatov, M. et al. Optimization of Soft Magnetic Properties in Nanocrystalline Fe-Rich Glass-Coated Microwires. JOM 67, 2108–2116 (2015). https://doi.org/10.1007/s11837-015-1546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1546-x

Keywords

Navigation