Skip to main content
Log in

Application of Mechanochemical Synthesis to Manufacturing of Permanent Magnets

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Synthesis of permanent magnet powders through mechanically and thermally activated reduction of metal oxides with calcium, which allows for the production of fine single crystal particles, may contribute to the ongoing search for alternatives to the Nd-Fe-B magnets. The reviewed efforts demonstrate the possibilities to prepare (1) high-coercivity SmCo5 nanoparticles for anisotropic exchange-coupled nanocomposites, (2) YCo5/LaCo5 powders with the magnetic properties superior to those obtained through other manufacturing methods and (3) submicron Mn-Bi powders with large concentration of the MnBi phase. Also discussed are less successful attempts to prepare Mn-Al, Zr-Co and Hf-Co hard magnetic alloys in which the principal phases are known or likely to be metastable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.H.J. Buschow, P.A. Naastepad, and F.F. Westendorp, J. Appl. Phys. 40, 4029 (1969).

    Article  Google Scholar 

  2. B.Z. Cui, A.M. Gabay, W.F. Li, M. Marinescu, J.F. Liu, and G.C. Hadjipanayis, J. Appl. Phys. 107, 09A721 (2010).

    Google Scholar 

  3. C.B. Rong, V.V. Nguyen, and J.P. Liu, J. Appl. Phys. 107, 09A717 (2010).

    Article  Google Scholar 

  4. C.H. Chen, S.J. Knutson, Y. Shen, R.A. Wheeler, J.C. Horwath, and P.N. Barnes, Appl. Phys. Lett. 99, 012504 (2011).

    Article  Google Scholar 

  5. S.K. Pal, L. Schultz, and O. Gutfleisch, J. Appl. Phys. 113, 013913 (2013).

    Article  Google Scholar 

  6. J.J. Becker, J. Appl. Phys. 42, 1537 (1971).

    Article  Google Scholar 

  7. A.M. Gabay, X.C. Hu, and G.C. Hadjipanayis, J. Magn. Magn. Mater. 368, 75 (2014).

    Article  Google Scholar 

  8. W.A.J.J. Velge and K.H.J. Buschow, J. Appl. Phys. 39, 1717 (1968).

    Article  Google Scholar 

  9. A.M. Gabay and G.C. Hadjipanayis, J. Phys. D: Appl. Phys. 47, 182001 (2014).

    Article  Google Scholar 

  10. C. Chinnasamy, M.M. Jasinski, A. Ulmer, W.F. Li, G. Hadjipanayis, and J.F. Liu, IEEE Trans. Magn. 48, 3641 (2012).

    Article  Google Scholar 

  11. K. Isogai, M. Matsuura, N. Tezuka, and S. Sugimoto, Mater. Trans. 54, 1673 (2013).

    Article  Google Scholar 

  12. V.V. Nguyen, N. Poudyal, X.B. Liu, J.P. Liu, K. Sun, M.J. Kramer, and J. Cui, Mater. Res. Express 1, 036108 (2014).

    Article  Google Scholar 

  13. J.Z. Wei, Z.G. Song, Y.B. Yang, S.Q. Liu, H.L. Du, J.Z. Han, D. Zhou, C.S. Wang, Y.C. Yang, A. Franz, D. Többens, and J.B. Yang, AIP Adv. 4, 127113 (2014).

    Article  Google Scholar 

  14. B.G. Shen, L.Y. Yang, H.Q. Guo, J.X. Zhang, and J.G. Zhao, J. Magn. Magn. Mater. 92, L30 (1990).

    Article  Google Scholar 

  15. X. Zhao, M.C. Nguyen, W.Y. Zhang, C.Z. Wang, M.J. Kramer, D.J. Sellmyer, X.Z. Li, F. Zhang, L.Q. Ke, V.P. Antropov, and K.M. Ho, Phys. Rev. Lett. 112, 045502 (2014).

    Article  Google Scholar 

  16. Y. Liu, M.P. Dallimore, P.G. McCormick, and T. Alonso, Appl. Phys. Lett. 60, 3186 (1992).

    Article  Google Scholar 

  17. W. Liu and P.G. McCormick, J. Magn. Magn. Mater. 195, L279 (1999).

    Article  Google Scholar 

  18. R.F. Sabiryanov and S.S. Jaswal, Phys. Rev. B 58, 12071 (1998).

    Article  Google Scholar 

  19. R. Horikawa, H. Fukunaga, M. Nakano, and T. Yanai, J. Appl. Phys. 115, 17A707 (2014).

    Article  Google Scholar 

  20. W.F. Li, A. Gabay, X.C. Hu, C. Ni, and G. Hadjipanayis, J. Phys. Chem. C 117, 10291 (2013).

    Article  Google Scholar 

  21. K.L.A. Belener and H. Kohlmann, J. Magn. Magn. Mater. 370, 134 (2014).

    Article  Google Scholar 

  22. A.M. Gabay, W.F. Li, and G.C. Hadjipanayis, IEEE Trans. Magn. 49, 3225 (2013).

    Article  Google Scholar 

  23. B.G. Kelly and K.M. Unruh, IEEE Trans. Magn. 49, 3349 (2013).

    Article  Google Scholar 

  24. J. Cui, J.P. Choi, E. Polikarpov, M.E. Bowden, W. Xie, G.S. Li, Z.M. Nie, N. Zarkevich, M.J. Kramer, and D. Johnson, Acta Mater. 79, 374 (2014).

    Article  Google Scholar 

  25. Y.Q. Li, M. Yue, J.H. Zuo, D.T. Zhang, W.Q. Liu, J.X. Zhang, Z.H. Guo, and W. Li, IEEE Trans. Magn. 49, 3391 (2013).

    Article  Google Scholar 

  26. P.K. Nguyen, S. Jin, and A.E. Berkowitz, J. Appl. Phys. 115, 17A756 (2014).

    Article  Google Scholar 

  27. N.V. Rama Rao, A.M. Gabay, X. Hu, and G.C. Hadjipanayis, J. Alloys Compd. 586, 349 (2014).

    Article  Google Scholar 

  28. N.V. Rama Rao and G.C. Hadjipanayis, J. Alloys Compd. 616, 319 (2014).

    Article  Google Scholar 

  29. H. Kronmüller, J.B. Yang, and D. Goll, J. Phys.: Condens. Matter 26, 064210 (2014).

    Google Scholar 

  30. J.M.D. Coey, Scr. Mater. 67, 524 (2012).

    Article  Google Scholar 

  31. Q. Zeng, I. Baker, and Z.C. Yan, J. Appl. Phys. 99, 08E902 (2006).

    Google Scholar 

  32. J.G. Lee, P. Li, C.J. Choi, and X.L. Dong, Thin Solid Films 519, 81 (2010).

    Article  Google Scholar 

  33. H. Jian, K.P. Skokov, and O. Gutfleisch, J. Alloys Compd. 622, 524 (2015).

    Article  Google Scholar 

  34. C. Gao, H. Wan, and G.C. Hadjipanayis, J. Appl. Phys. 67, 4960 (1990).

    Article  Google Scholar 

  35. M.A. McGuire, O. Rios, N.J. Ghimire, and M. Koehler, Appl. Phys. Lett. 101, 202401 (2012).

    Article  Google Scholar 

  36. W.Y. Zhang, X.Z. Li, S. Valloppilly, R. Skomski, and D.J. Sellmyer, Mater. Sci. Eng., B 186, 64 (2014).

    Article  Google Scholar 

  37. B. Balamurugan, B. Das, W.Y. Zhang, R. Skomski, and D.J. Sellmyer, J. Phys.: Condens. Matter 26, 064204 (2014).

    Google Scholar 

  38. X.J. Liu, H.H. Zhang, C.P. Wang, and K. Ishida, J. Alloys Compd. 482, 99 (2009).

    Article  Google Scholar 

  39. H. Okamoto, J. Phase Equilib. Diffus. 32, 169 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This review is based on result of the efforts supported by DOE ARPA-E, DOE BES, NSF G8, and Siemens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gabay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabay, A.M., Hadjipanayis, G.C. Application of Mechanochemical Synthesis to Manufacturing of Permanent Magnets. JOM 67, 1329–1335 (2015). https://doi.org/10.1007/s11837-015-1426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1426-4

Keywords

Navigation