Skip to main content
Log in

Comparison of Spherical and Flat Tips for Indentation of Hydrogels

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Although both spherical and flat tips have been used in nanoindentation studies of soft biomaterials, care must be taken in selecting and validating a tip for a specific application. This article compares the moduli measured using spherical nanoindentation, flat tip (specifically, a flattened cone) nanoindentation, and unconfined compression testing of three polyacrylamide gels with nominal moduli between 10 kPa and 50 kPa. Although spherical indentation moduli were consistent with compression testing moduli and were independent of indentation depth, the flat tip results showed a significant increase in modulus with depth when analyzed using a flat punch model. Alternative methods are proposed to analyze the flat tip data to bring the flat tip results into alignment with the moduli measured using the other mechanical testing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.M Ebenstein, Handbook of Nanoindentation with Biological Applications, ed. M.L. Oyen (Singapore: Pan Stanford Publishing, 2010), pp. 279–324.

  2. D.M. Ebenstein and L.A. Pruitt, Nano Today 1, 26 (2006).

    Article  Google Scholar 

  3. O. Franke, M. Goken, and A.M. Hodge, J. Met. 60, 49 (2008).

    Google Scholar 

  4. J.D. Kaufman, G.J. Miller, E.F. Morgan, and C.M. Klapperich, J. Mater. Res. 23, 1472 (2008).

    Article  Google Scholar 

  5. M.L. Oyen, Exp. Tech. 37, 73 (2013).

    Article  Google Scholar 

  6. J. Deuschle, S. Enders, and E. Arzt, J. Mater. Res. 22, 3107 (2007).

    Article  Google Scholar 

  7. D.M. Ebenstein, J. Mater. Res. 26, 1026 (2011).

    Article  Google Scholar 

  8. J.D. Kaufman and C.M. Klapperich, J. Mech. Behav. Biomed. Mater. 2, 312 (2009).

    Article  Google Scholar 

  9. S. Piccarolo, A. Falsone, and A.M. Poulose, Meas. Sci. Technol. 21, 065701–065708 (2010).

    Article  Google Scholar 

  10. D.M. Ebenstein and K.J. Wahl, J. Colloid Interface Sci. 298, 652 (2006).

    Article  Google Scholar 

  11. S. Gupta, F. Carrillo, C. Li, L. Pruitt, and C. Puttlitz, Mater. Lett. 61, 448 (2007).

    Article  Google Scholar 

  12. J.C. Kohn and D.M. Ebenstein, J. Mech. Behav. Biomed. Mater. 20, 316 (2013).

    Article  Google Scholar 

  13. C.L. Slaboch, M.S. Alber, E.D. Rosen, and T.C. Ovaert, J. Mech. Behav. Biomed. Mater. 10, 75 (2012).

    Article  Google Scholar 

  14. M. Galli, K.S.C. Comley, T.A.V. Shean, and M.L. Oyen, J. Mater. Res. 24, 973 (2009).

    Article  Google Scholar 

  15. N.K. Simha, H. Jin, M.L. Hall, S. Chiravarambath, and J.L. Lewis, J. Biomech. Eng. 129, 767 (2007).

    Article  Google Scholar 

  16. D.M. Ebenstein, and L.A. Pruitt, J. Biomed. Mater. Res. A 69A, 222 (2004).

    Article  Google Scholar 

  17. K. Liu, M.R. VanLandingham, and T. Ovaert, J. Mech. Behav. Biomed. Mater. 2, 355 (2009).

    Article  Google Scholar 

  18. T. Niu and G. Cao, J. Phys. D Appl. Phys. 47, 385303 (2014).

    Article  Google Scholar 

  19. P.L. Leong and E.F. Morgan, Acta Biomater. 4, 1569 (2008).

    Article  Google Scholar 

  20. A.B. Mann and J.B. Pethica, Langmuir 12, 4583 (1996).

    Article  Google Scholar 

  21. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  22. M. Zhang, Y.P. Zheng, and F.T. Mak, Med. Eng. Phys. 19, 512 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Matthew Heintzelman for preparation of the polyacrylamide gels and Professor Wendelin Wright and Dr. Jove Graham for valuable feedback during preparation of the manuscript. K.J.T. was funded through the Program for Undergraduate Research at Bucknell University. The nanoindenter used in this study was obtained through the support of the National Science Foundation (MRI-1040319). Conclusions and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna M. Ebenstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, K.J., Ebenstein, D.M. Comparison of Spherical and Flat Tips for Indentation of Hydrogels. JOM 67, 713–719 (2015). https://doi.org/10.1007/s11837-015-1332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1332-9

Keywords

Navigation