Skip to main content
Log in

SCAPS Modeling for Degradation of Ultrathin CdTe Films: Materials Interdiffusion

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ultrathin film solar cells based on CdS/CdTe (d CdTe ≤ 1 µm) suffer from two main issues: incomplete photo absorption and high degradation rate. The former is cured by light-trapping techniques, whereas the latter is a matter of fabrication details. Interdiffusion of the material components and formation of subsequent interlayers at the front/back region can change the optical/electrical properties and performance/stability of the device. We model the degradation of the ultrathin CdTe film devices considering the material interdiffusion and interlayers formation: CdTeS, CdZnTe, Cu x Te (i.e., Te/Cu bilayer), and oxide interlayers (i.e., CdTeO3). The diffusion rate of the materials is considered separately and the reactions that change the interlayer’s properties are studied. Additionally, a back contact of single-walled carbon nanotube showed a higher stability than the metallic contacts. A new time-dependent approach is applied to simulate the degradation rate due to formation of any interlayer. It is shown that the materials interdiffusion causes a defect increment under thermal stress and illumination. The metallic back contact accelerates the degradation, whereas single-walled carbon nanotubes show the highest stability. A SCAPS simulator was used because of its ability in defining the properties of the back contact and metastabilities at the interface layers. The properties of the layers were taken from the experimental data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.L. Rowlands, S. Irvine, V. Barrioz, and D.A. Lamb, Semicond. Sci. Technol. 23, 015017 (2008).

    Article  Google Scholar 

  2. A. Salavei, I. Rimmaudo, F. Piccinelli, and A. Romeo, Thin Solid Films 535, 257 (2013).

    Article  Google Scholar 

  3. N. Paudel, K.A. Wieland, S. Asher, and A.D. Compaan, Prog. Photovolt. Res. Appl. 22, 107 (2014).

    Article  Google Scholar 

  4. Z. Bai, J. Yang, and D. Wang, Appl. Phys. Lett. 99, 143502 (2011).

    Article  Google Scholar 

  5. W. Xia, H. Lin, H. Wu, C.W. Tang, and I. Irfan, Sol. Energy Mater. Sol. Cells 128, 411 (2014).

    Article  Google Scholar 

  6. N.E. Gorji, Appl. Phys. A 16, 1347 (2014).

    Article  MathSciNet  Google Scholar 

  7. H. Lin (Doctoral thesis, University of Rochester, 2012).

  8. B.E. McCandlessa, S. Hegedus, R.W. Birkmire, and D. Cunningham, Thin Solid Films 431–432, 249 (2003).

    Article  Google Scholar 

  9. K.D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, Sol. Energy Mater. Solar Cells 62, 295 (2000).

    Article  Google Scholar 

  10. I.V. Fisher, K.D. Dobson, G. Hodes, and D. Cahen, Adv. Funct. Mater. 13, 289 (2003).

    Article  Google Scholar 

  11. V. Krishnakumar, A. Barati, H. Schimper, A. Klein, and W. Jaegermann, Thin Solid Films 535, 233 (2013).

    Article  Google Scholar 

  12. A.J. Clayton, S.C. Irvine, E. Jones, and V. Barrioz, Sol. Energy Mater. Solar Cells 101, 68 (2012).

    Article  Google Scholar 

  13. R. Dhere, Y. Zhang, M. Romero, R. Noufi, and T. Gassert, in Proceedings of the 33rd IEEE Photovoltaic Specialists Conference—PVSC 2008 (Piscataway, NJ: IEEE, 2008).

  14. K.V. Krishna, V. Dutta, and K. Rao, Phys. Status Solidi A 198, 443 (2003).

    Article  Google Scholar 

  15. E.W. Jones, V. Barrioz, S. Irvine, and D. Lamb, Thin Solid Films 517, 2226 (2009).

    Article  Google Scholar 

  16. S. Irvine, V. Barrioz, A. Stafford, and K. Durose, Thin Solid Films 76, 480 (2005).

    Google Scholar 

  17. G. Kartopu, A.A. Taylor, A.J. Clayton, V. Barrioz, D.A. Lamb, and S. Irvine, J. Appl. Phys. 115, 104505 (2014).

    Article  Google Scholar 

  18. G. Teeter, J. Appl. Phys. 102, 034504 (2007).

    Article  Google Scholar 

  19. S. Hegedus, B. McCandless, R. Birkmire, in Proceedings of the 28th IEEE Photovoltaic Specialists Conference—PVSC 2000 (Piscataway, NJ: IEEE, 2000).

  20. J. Zhou, X. Wu, A. Duda, G. Teeter, and S.H. Demtsu, Thin Solid Films 515, 7364 (2007).

    Article  Google Scholar 

  21. V. Plotnikov (Doctoral thesis, University of Toledo, 2009).

  22. A.B. Phillips, R. Zartman, P.V. Plotnikov, and A.D. Compaan, Nano Lett. 13, 5224 (2013).

    Article  Google Scholar 

  23. M. Burgelman, K. Decock, S. Khelifi, and A. Abass, Thin Solid Films 535, 296 (2013).

    Article  Google Scholar 

  24. M. Nardone, J. Appl. Phys. 115, 234502 (2014).

    Article  Google Scholar 

  25. G. Xosrovashvili and N.E. Gorji, Int. J. Photoenerg. 784857 (2014).

  26. T.D. Dzhafarov, S. Yesilkaya, and M. Caliskan, Sol. Energy Mater. Solar Cells 85, 371 (2005).

    Article  Google Scholar 

  27. D. Krasikov, A. Knizhnik, B. Potapkin, and T. Sommerer, Thin Solid Films 535, 322 (2013).

    Article  Google Scholar 

  28. N.E. Gorji, IEEE Trans. Nanotechnol. 13, 743 (2014).

    Article  Google Scholar 

  29. N.E. Gorji and M. Houshmand, Physica E 50, 122 (2013).

    Article  Google Scholar 

  30. N.E. Gorji, IEEE Trans. Device Mater. Reliab. 14, 983 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

Prof. M. Burgelman and his colleagues are appreciated for providing us the SCAPS simulator. This work was funded by the Nano council of Iranian under National Elites Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima E. Gorji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houshmand, M., Zandi, M.H. & Gorji, N.E. SCAPS Modeling for Degradation of Ultrathin CdTe Films: Materials Interdiffusion. JOM 67, 2062–2070 (2015). https://doi.org/10.1007/s11837-014-1286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1286-3

Keywords

Navigation