Skip to main content
Log in

PFC Emissions from Detected Versus Nondetected Anode Effects in the Aluminum Industry

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Perfluorinated carbon compounds (PFCs) CF4 and C2F6 are potent greenhouse gases that are generated in aluminum reduction cells during events known as anode effects (AEs). Since the 1990s, the aluminum industry has made considerable progress in reducing PFCs from conventionally defined and detected AEs. However in recent years, the industry has noted the presence of unaccounted PFCs that are generated outside the conventional AE definition. Two additional AE categories have been proposed, namely low-voltage, propagating AEs (LVP-AEs) and nonpropagating AEs (NP-AEs) that relate to continuous, background levels of PFC emissions. These unaccounted PFC phenomena may help explain the recent discrepancy between industry accounting and atmospheric measurements of global PFC emissions. Estimates from AGAGE, a global network of atmospheric observatories, suggest as much as 50% underaccounting of PFCs by the aluminum industry in the 2006–2010 period. The following work reviews this discrepancy and the potential role played by LVP-AEs and NP-AEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5), ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge, U.K.: Cambridge University Press, 2013).

  2. J. Marks and C. Bayliss, Light Metals 2012, ed. C.E. Suarez (Hoboken, NJ: Wiley, 2012), pp. 805–808.

    Google Scholar 

  3. A. Tabereaux (Paper presented at Eighth Australasian Aluminium Smelting Technology Conference and Workshops, Yeppoon, Australia, 2004).

  4. W. Bjerke, R. Chase, R. Gibson, and J. Marks, Light Metals 2004, ed. A.T. Tabereaux (Warrendale, PA: TMS, 2004), pp. 367–372.

    Google Scholar 

  5. Intergovernmental Panel on Climate Change (IPCC), 2006 IPCC Guidelines for National Greenhouse Gas Inventories, in Volume 3Industrial Processes and Product Use, ed. J.H.Y. Katima and A. Rosland (Kanagawa, Japan: Institute for Global Environmental Strategies (IGES), 2006), pp. 4.49–4.57.

  6. W. Li, Q. Zhao, J. Yang, S. Qiu, X. Chen, J. Marks, and C. Bayliss, Light Metals 2011, ed. S.J. Lindsay (Hoboken, NJ: Wiley, 2011), pp. 309–314.

  7. W. Li, X. Chen, J. Yang, C. Hu, Y. Liu, D. Li, and H. Guo, Light Metals 2012, ed. C.E. Suarez (Hoboken, NJ: Wiley, 2012), pp. 619–622.

  8. D.S. Wong and J. Marks, Light Metals 2012, ed. B. Sadler (Hoboken, NJ: Wiley, 2012), pp. 865–870.

  9. Zarouni, A., M. Reverdy, A. Al Zarouni, and K.G. Venkatasubramaniam, Light Metals 2013, ed. B. Sadler (Hoboken, NJ: Wiley, 2013), pp. 859–863.

  10. A. Al Zarouni and A.A. Zarouni (Paper presented at the 10th Australasian Aluminium Smelting Technology Conference, Launceston, Tasmania, 9–17 October 2011), pp. 1–7.

  11. D.S. Wong, A. Tabereaux, and P. Lavoie, Light Metals 2014, ed. J. Grandfield (Hoboken, NJ: Wiley, 2014), pp. 529–534.

  12. J. Kim, P.J. Fraser, S. Li, J. Mühle, A.L. Ganesan, P.B. Krummel, L.P. Steele, S. Park, S.-K. Kim, M.-K. Park, T. Arnold, C.M. Harth, P.K. Salameh, R.G. Prinn, R.F. Weiss, and K.-R. Kim, Geophys. Res. Lett. 41, 4787 (2014).

    Google Scholar 

  13. International Aluminium Institute, Results of the 2013 Anode Effect Survey (London: International Aluminium Institute, 2014), pp. 1–25.

    Google Scholar 

  14. C. Bayliss and J. Marks, Personal communication, 2014.

  15. R.A. Rasmussen, S.A. Penkett, and N. Prosser, Nature 277, 549 (1979).

    Article  Google Scholar 

  16. A. Khalil and R. Rasmussen, Geophys. Res. Lett. 12, 671 (1985).

    Article  Google Scholar 

  17. J. Harnisch, Die Globalen Atmospharischen Haushalte der Spurengase Tetrafluormethan (CF 4 ) und Hexafluorethan (C 2 F 6 ) (Ph.D. dissertation in Mathematics and Science, Fakultaten der Georg-August-Universitat zu Gottigen, 1996).

  18. J. Harnisch, in Handbook of Environmental Chemistry, 4th ed., Reactive Halogen Compounds in the Atmosphere, ed. P. Fabian and O. Singh (Berlin: Springer, 1999) pp. 81–111.

  19. A. Khalil, R. Rasmussen, J. Culbertson, J. Prins, E. Grimsrud, and M. Shearer, Environ. Sci. Technol. 37, 4358 (2003).

    Article  Google Scholar 

  20. J. Mühle, A.L. Ganesan, B.R. Miller, P.K. Salameh, C.M. Harth, B.R. Greally, M. Rigby, L.W. Porter, L.P. Steele, C.M. Trudinger, P.B. Krummel, S. O’Doherty, P.J. Fraser, P.G. Simmonds, R.G. Prinn, and R.F. Weiss, Atmos. Chem. Phys. 10, 5145 (2010).

    Article  Google Scholar 

  21. J. Kim, S. Li, K.-R. Kim, A. Stohl, J. Mühle, S.-K. Kim, M.-K. Park, D.-J. Kang, G. Lee, C. Harth, P. Salameh, and R. Weiss, Geophys. Res. Lett. 37, 4787 (2010).

    Google Scholar 

  22. R. Keller and K.T. Larimer, Rare Earths: Science, Technology and Applications III, ed. R.G. Bautista, C.O. Bounds, T.W. Ellis, and B.T. Kilbourn (Warrendale, PA: TMS, 1997), pp. 175–180.

  23. G. Wang, X. Wang, and H. Zhu, Energy Technology 2011, ed. N.R. Neelameggham, C.K. Belt, M. Jolly, R.G. Reddy, and J.A. Yurko (Hoboken: Wiley, 2011), pp. 131–135.

  24. P. Fraser, P. Steele, and M. Cooksey, Light Metals 2013, ed. B. Sadler (Hoboken, NJ: Wiley, 2013), pp. 871–876.

  25. U.S. Geological Survey, Mineral Commodity SummariesRare Earths (Reston, VA: U.S. Geological Survey, 2014), pp. 128–129.

  26. International Aluminium Institute (IAI), World AluminiumAlumina Production (2014), http://www.world-aluminium.org/statistics/alumina-production/

  27. B. Miller, R. Weiss, P. Salameh, T. Tanhua, B. Greally, J. Mühle, and P. Simmonds, Anal. Chem. 80, 1536 (2008).

    Article  Google Scholar 

  28. R. Prinn, R. Weiss, P. Fraser, P. Simmonds, D. Cunnold, F. Alyea, S. O’Doherty, P. Salameh, B. Miller, J. Huang, R. Wang, D. Hartley, C. Harth, P. Steele, G. Sturrock, P. Midgley, and A. McCulloch, J. Geophys. Res. 105, 17751 (2000).

    Article  Google Scholar 

  29. D.R. Worton, W.T. Sturges, L.K. Gohar, K.P. Shine, P. Martinerie, D.E. Oram, S.P. Humphrey, P. Begley, L. Gunn, J.M. Barnola, J. Schwander, and R. Mulvaney, Environ. Sci. Technol. 41, 2184 (2007).

    Article  Google Scholar 

  30. P. Fraser, B. Dunse, P. Steele, P. Krummel, and N. Derek (Paper presented at the Australasian Aluminium Smelting Technology Conference, Launceston, Tasmania, 9–17 October 2011).

  31. Wikipedia, List of aluminium smelters, 2014, http://en.wikipedia.org/wiki/List_of_aluminium_smelters

  32. International Aluminium Institute, Results from the 2012 Anode Effect Survey (London: International Aluminium Institute, 2013), pp. 1–24.

    Google Scholar 

  33. S. Li, J. Kim, K.-R. Kim, J. Mühle, S.-K. Kim, M.-K. Park, A. Stohl, D.-J. Kang, T. Arnold, C. Harth, P. Salameh, and R. Weiss, Environ. Sci. Technol. 45, 5668 (2011).

    Article  Google Scholar 

  34. International Aluminium Institute (IAI), World AluminiumPrimary Aluminium Production (2014), http://www.world-aluminium.org/statistics/-data

  35. W. Li, Q. Zhao, S. Qiu, S. Zhang, and X. Chen, Light Metals 2011, ed. S.J. Lindsay (Hoboken, NJ: Wiley, 2011), pp. 357–360.

  36. H. Åsheim, T.A. Aarhaug, A. Ferber, O.S. Kjos, and G.M. Haarberg, Light Metals 2014, ed. J. Granfield (Hoboken, NJ: Wiley, 2014), pp. 535–539.

  37. N.R. Dando, Light Metals 2003, ed. P.N. Crepeau (Warrendale, PA: TMS, 2003), pp. 205–210.

  38. S. Gaboury, A. Gosselin, P. Tremblay, and J. Marks, Light Metals 2014, ed. J. Grandfield (Hoboken, NJ: Wiley, 2014), pp. 523–528.

  39. B.J. Welch (Paper presented at the Australasian Aluminium Smelting Technology Conference, Launceston, Tasmania, 9–17 October 2011).

  40. X. Chen, W. Li, Y. Zhang, S. Qiu, and C. Bayliss, Light Metals 2013, ed. B. Sadler (Hoboken, NJ: Wiley, 2013), pp. 877–881.

  41. A. Al Zarouni, B.J. Welch, M.M. Al-Jallaf, and A. Kumar, Light Metals 2011, ed. S.J. Lindsay (Hoboken, NJ: Wiley, 2011), pp. 333–337.

  42. W. Li, X. Chen, S. Qiu, B. Zhang, and C. Bayliss, Light Metals 2013, ed. B. Sadler (Hoboken, NJ: Wiley, 2013), pp. 893–898.

  43. J. Thonstad, Electrochim. Acta 12, 1219 (1967).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the following for their important contributions to this work: Dr. Alton Tabereaux (USA), Dr. Jerry Marks (J Marks & Associates LLC, USA), Sally Rand (U.S. EPA, USA), and Dr. Mark Cooksey (CSIRO, Australia).

Furthermore, the authors would also like to thank the team of AGAGE investigators for their invaluable PFC measurement and emissions modeling contributions,12,20 notably Dr. Jens Mühle (Scripps Institution of Oceanography, University of California, San Diego, CA, USA), Dr. Anita L. Ganesan (University of Bristol, Bristol, U.K.), Dr. Shanlan Li (Research Institute of Oceanography, Seoul National University, Seoul, South Korea), The Cape Grim staff (Bureau of Meteorology, Melbourne, Australia), and Nada Derek and Bronwyn Dunse (CSIRO, Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, D.S., Fraser, P., Lavoie, P. et al. PFC Emissions from Detected Versus Nondetected Anode Effects in the Aluminum Industry. JOM 67, 342–353 (2015). https://doi.org/10.1007/s11837-014-1265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1265-8

Keywords

Navigation