Skip to main content
Log in

Tuning the Planar-Flow Melt-Spinning Process Subject to Operability Conditions

  • Published:
JOM Aims and scope Submit manuscript

Abstract

An amorphous structure improves the physical properties of metal and enhances material performance. Planar-flow melt-spinning (PFMS) is a rapid solidification process for producing microcrystalline and amorphous metal ribbons. In PFMS, molten metal is fed through a nozzle onto a rotating wheel where the melt freezes and a continuous ribbon is spun. This study proposes a rapid method for process tuning. Examples were used to determine the applied pressure and wheel speed for designing the ribbon thickness and a wheel-nozzle gap with a preset nozzle size. The determined operating variables are suited to operation conditions, enabling the successful production of continuous ribbon. The proposed method was tested using computational fluid dynamics by treating the liquid metal and ambient air as a two-phase flow using the volume of fluid method. This study used the model to predict the puddle shape and ribbon thickness by fixing the dimensions of the wheel-nozzle gap and nozzle slot and varying the pressure and wheel speed. The results from the simulation confirmed the viability of the method and showed a concerted trend for the ribbon thickness compared with previous studies. In addition, the simulation revealed a fluctuation in the ribbon thickness, which was attributed to the first vibration mode of the puddle that was related to the natural frequency of the liquid inertia balanced by surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Duwez, R.H. Willens, and W. Klement, J. Appl. Phys. 31, 1136 (1960).

    Article  Google Scholar 

  2. W. Klement, R.H. Wilens, and P. Duwez, Nature 187, 869 (1960).

    Article  Google Scholar 

  3. A. Inoue, H. Koshiba, T. Zhang, and A. Makino, J. Appl. Phys. 83, 1967 (1998).

    Article  Google Scholar 

  4. T.M. Pollock and S. Tin, J. Propuls. Power 22, 361 (2006).

    Article  Google Scholar 

  5. R.H. Belden, Chem. Eng. Prog. 81, 27 (1985).

    Google Scholar 

  6. M.E. McHenry, M.A. Willard, and D.E. Laughlin, Prog. Mater. Sci. 44, 291 (1999).

    Article  Google Scholar 

  7. J. Kramer, Ann. Phys. 19, 37 (1934).

    Article  Google Scholar 

  8. P. Duwez and R.H. Willens, Trans. TMS-AIME 227, 362 (1963).

    Google Scholar 

  9. H.H. Liebermann and C.D. Graham, IEEE Trans. Magn. 12, 921 (1976).

    Article  Google Scholar 

  10. K. Shibuya and M. Ozawa, ISIJ Int. 31, 661 (1991).

    Article  Google Scholar 

  11. M.C. Narasimhan, United States Patent No. 4142571 (6 March 1979).

  12. P.H. Steen and C. Karcher, Annu. Rev. Fluid Mech. 29, 373 (1997).

    Article  Google Scholar 

  13. J.K. Carpenter and P.H. Steen, J. Mater. Sci. 27, 215 (1992).

    Article  Google Scholar 

  14. C.J. Byrne, S.J. Weinstein, and P.H. Steen, Chem. Eng. Sci. 61, 8004 (2006).

    Article  Google Scholar 

  15. J.K. Carpenter and P.H. Steen, Int. J. Heat Mass Transf. 40, 1993 (1997).

    Article  MATH  Google Scholar 

  16. E.A. Theisen, M.J. Davis, S.J. Weinstein, and P.H. Steen, Chem. Eng. Sci. 65, 3249 (2010).

    Article  Google Scholar 

  17. T.J. Praisner, J.S.-J. Chen, and A.A. Tseng, Metall. Mater. Trans. B 26B, 1199 (1995).

    Article  Google Scholar 

  18. S.L. Wu, C.W. Chen, W.S. Hwang, and C.C. Yang, Appl. Math. Modell. 16, 394 (1992).

    Article  MATH  Google Scholar 

  19. C.W. Chen and W.S. Hwang, ISIJ Int. 35, 393 (1995).

    Article  Google Scholar 

  20. M. Bussmann, J. Mostaghimi, D.W. Kirk, and J.W. Graydon, Int. J. Heat Mass Transf. 45, 3997 (2002).

    Article  MATH  Google Scholar 

  21. H. Liu, W. Chen, S. Qiu, and G. Liu, Metall. Mater. Trans. B 40B, 411 (2009).

    Article  Google Scholar 

  22. H. Liu, W. Chen, and G. Liu, ISIJ Int. 49, 1895 (2009).

    Article  Google Scholar 

  23. H. Fiedler, H. Mühlbach, and G. Stephani, J. Mater. Sci. 19, 3229 (1984).

    Article  Google Scholar 

  24. M.T. Smith and M. Saletore, Rev. Sci. Instrum. 57, 1647 (1986).

    Article  Google Scholar 

  25. P.D. Wilde and E.F. Matthys, Mater. Sci. Eng. A150, 237 (1992).

    Article  Google Scholar 

  26. M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, and W.A. Wakeham, J. Phys. Chem. Ref. Data 35, 285 (2006).

    Article  Google Scholar 

  27. L. Dou, Z.F. Yuan, J.Q. Li, J. Li, and X.Q. Wang, Chin. Sci. Bull. 53, 2593 (2008).

    Article  Google Scholar 

  28. C.W. Hirt and B.D. Nichols, J. Comput. Phys. 39, 201 (1981).

    Article  MATH  Google Scholar 

  29. J.U. Brackbill, D.B. Kothe, and C. Zemach, J. Comput. Phys. 100, 335 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  30. R.I. Issa, J. Comput. Phys. 62, 40 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  31. B.P. Leonard and S. Mokhtari, NASA Tech. Memo. 102568 (ICOMP-90-12, 1990), pp. 1–50.

  32. C.J. Byrne, E.A. Theisen, B.L. Reed, and P.H. Steen, Metall. Mater. Trans. B 37B, 445 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the China Steel Company through project 00T1F-RE043. The authors are grateful for help from Dr. Howard Chen in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, YG., Chen, F., Chang, CM. et al. Tuning the Planar-Flow Melt-Spinning Process Subject to Operability Conditions. JOM 66, 1277–1286 (2014). https://doi.org/10.1007/s11837-014-0982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0982-3

Keywords

Navigation