Skip to main content
Log in

Precipitation Simulation of AZ91 Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Precipitation simulation of AZ91 (Mg-9Al-1Zn; all compositions are in wt.% unless otherwise stated.) magnesium alloy is carried out in this work using the PanPrecipitation module of Pandat™ software. In addition to the software, the thermodynamic database, mobility database, and precipitation database for AZ91 were developed to perform the simulation. The simulated results, such as the number density and particle size of the γ-Mg17Al12 precipitate, showed good agreement with the experimental data. Moreover, the simulated results were then used as input for the prediction of yield strength and micro-hardness of AZ91 aged at different temperatures, which also agreed well with experimental results. To demonstrate the applicability of the databases developed for AZ91, simulations were also carried out for two compositions with lower and higher Zn content. The simulated hardness showed reasonable agreement with the published experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.N. Braszczynska-Malik and J. Alloy, Compounds 477, 870 (2009).

    Article  Google Scholar 

  2. C.R. Hutchinson, J.F. Nie, and S. Gorsse, Metall. Mater. Trans. A 36A, 2093 (2005).

    Article  Google Scholar 

  3. S. Celotto, Acta Mater. 48, 1775 (2000).

    Article  Google Scholar 

  4. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, Calphad 33, 328 (2009).

    Article  Google Scholar 

  5. W. Cao, F. Zhang, S.L. Chen, C. Zhang, and Y.A. Chang, JOM 63, 29 (2011).

    Article  Google Scholar 

  6. PanMg thermodynamic database (Madison, WI: CompuTherm LLC).

  7. D. Duly, J.P. Simon, and Y. Brechet, Acta Metall. Mater. 43, 101 (1995).

    Google Scholar 

  8. E. Cerri and S. Barbagallo, Mater. Lett. 56, 716 (2002).

    Article  Google Scholar 

  9. M.X. Zha and P.M. Kelly, Scr. Mater. 48, 647 (2003).

    Article  Google Scholar 

  10. M.A. Gharghouri, DEA (Grenoble: Institut National Polytechnique de Grenoble, 1991).

    Google Scholar 

  11. M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root, Philos. Mag. 79, 1671 (1999).

    Article  Google Scholar 

  12. L. Kaufman, Computer Calculation of Phase Diagrams (New York, NY: Academic Press, 1970).

    Google Scholar 

  13. N. Saunders and A.P. Miodownik, Pergamon Materials Series, ed. R.W. Cahn (Cambridge, U.K.: Elsevier, 1998).

  14. J.S. Langer and A.J. Schwartz, Phys. Rev. A 21, 948 (1980).

    Article  MathSciNet  Google Scholar 

  15. R. Kampmann and R. Wagner, Decomposition of Alloys: The Early Stages, eds. P. Haasen, et al. (Oxford, U.K.: Pergamon Press, 1984), pp. 91–103.

  16. J.E. Morral and G.R. Purdy, Scr. Metall. Mater. 30, 905 (1994).

    Article  Google Scholar 

  17. L.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  18. C. Wagner, Z. Elektrochem. 65, 581 (1961).

    Google Scholar 

  19. C.H. Caceres, J.R. Griffiths, A.R. Pakdel, and C.J. Davidson, Metall. Mater. Trans. A 402, 258 (2005).

    Google Scholar 

  20. N. Gerhard and T. Cornelis, Pergamon Materials Series (Cambridge, U.K.: Elsevier, 2011).

    Google Scholar 

  21. K.N. Kulkarni and A.A. Luo, J. Phase Equilib. Diff. 34, 104 (2013).

    Article  Google Scholar 

  22. C.H. Caceres, AFS Trans. 110, 1163 (2002).

    Google Scholar 

  23. S. Celotto and T.J. Bastow, Acta Mater. 49, 41 (2001).

    Article  Google Scholar 

  24. K. Venkatesan and C.J. Bettles, Magnesium Alloys and Their Applications, ed. K.U. Kainer (Weinheim, FRG: Wiley-VCH Verlag GmbH and Co. KGaA, 2000).

  25. F. Zhang, W. Cao, S.L. Chen, C. Zhang, and J. Zhu, 2 World congress on Integrated Computational Materials Engineering, ed. M. Li, C. Campbell, K. Thornton, E. Holm, and P. Gumbsch (Hoboken, NJ: John Wiley & Sons, Inc., 2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Cao, W., Chen, SL. et al. Precipitation Simulation of AZ91 Alloy. JOM 66, 389–396 (2014). https://doi.org/10.1007/s11837-014-0879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0879-1

Keywords

Navigation