Skip to main content
Log in

Phase-Field Crystal Model for Fe Connected to MEAM Molecular Dynamics Simulations

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A recently developed phase-field crystal (PFC) model incorporates elasticity and plasticity in the microstructural evolution of materials naturally by representing the density field for the crystalline state by periodic functions and by using a constant density for liquid state. PFC is of great interest in nano- and micro-structural modeling of materials because it is a model with atomistic scale details but is applicable to diffusive time scales. However, determining model parameters for specific materials is one of the less developed aspects of PFC modeling. In this article, molecular dynamics (MD) simulations of solid–liquid structures for Fe were performed using the modified embedded-atom method to determine the melting point, latent heat, expansion in melting, density profile, and liquid structure factor. The influence of simulation cell size on the results of MD simulations was also investigated. The melting temperature, density profile, and liquid structure factor were used as inputs to find model parameters required by the PFC model for Fe. The spatial derivative order of the PFC time-evolution equation was reduced from four to two, and the resultant system of partial differential equations was solved numerically using the finite element method. The required simulation domain and element size for the convergence of the PFC simulations were determined, and the expansion in melting, latent heat and solid–liquid surface free energy were calculated. The PFC results were compared with the results of other computational and experimental works in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Horstemeyer, Practical Aspects of Computational Chemistry (New York: Springer, 2010), p. 87.

    Google Scholar 

  2. A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 (1998).

    Article  MATH  Google Scholar 

  3. M. Asle Zaeem and S.D. Mesarovic, J. Comput. Phys. 229, 9135 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Asle Zaeem, H. El Kadiri, P. Wang, and M.F. Horstemeyer, Comput. Mater. Sci. 50, 2488 (2011).

    Article  Google Scholar 

  5. Y.U. Wang, Y. Jin, A. Cuitino, and A. Khachaturyan, Acta Mater. 49, 1847 (2001).

    Article  Google Scholar 

  6. M. Mamivand, M. Asle Zaeem, H. El Kadiri, and L.-Q. Chen, Acta Mater. 61, 5223 (2013).

    Article  Google Scholar 

  7. K. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett. 88, 245701 (2002).

    Article  Google Scholar 

  8. K.R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).

    Article  Google Scholar 

  9. K. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, Phys. Rev. B 75, 064107 (2007).

    Article  Google Scholar 

  10. S. van Teeffelen, R. Backofen, A. Voigt, and H. Löwen, Phys. Rev. E 79, 051404 (2009).

    Article  Google Scholar 

  11. N. Pisutha-Arnond, V. Chan, K. Elder, and K. Thornton, Phys. Rev. B 87, 014103 (2013).

    Article  Google Scholar 

  12. J. Berry, K. Elder, and M. Grant, Phys. Rev. B 77, 224114 (2008).

    Article  Google Scholar 

  13. J. Mellenthin, A. Karma, and M. Plapp, Phys. Rev. B 78, 184110 (2008).

    Article  Google Scholar 

  14. J. Berry, M. Grant, and K. Elder, Phys. Rev. E 73, 031609 (2006).

    Article  Google Scholar 

  15. K. Elder, K. Thornton, and J. Hoyt, Philos. Mag. 91, 151 (2011).

    Article  Google Scholar 

  16. M. Greenwood, N. Provatas, and J. Rottler, Phys. Rev. Lett. 105, 045702 (2010).

    Article  Google Scholar 

  17. N. Ofori-Opoku, V. Fallah, M. Greenwood, S. Esmaeili, and N. Provatas, Phys. Rev. B 87, 134105 (2013).

    Article  Google Scholar 

  18. J. Berry, N. Provatas, J. Rottler, and C.W. Sinclair, Phys. Rev. B 86, 224112 (2012).

    Article  Google Scholar 

  19. K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007).

    Article  Google Scholar 

  20. A. Jaatinen, C. Achim, K. Elder, and T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009).

    Article  Google Scholar 

  21. G. Shen, M.L. Rivers, S.R. Sutton, N. Sata, V.B. Prakapenka, J. Oxley, and K.S. Suslick, Phys. Earth Planet. Interiors 143, 481 (2004).

    Article  Google Scholar 

  22. G. Shen, V.B. Prakapenka, M.L. Rivers, and S.R. Sutton, Phys. Rev. Lett. 92, 185701 (2004).

    Article  Google Scholar 

  23. F. Cherne, M. Baskes, and P. Deymier, Phys. Rev. B 65, 024209 (2001).

    Article  Google Scholar 

  24. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  Google Scholar 

  25. M. Mendelev, S. Han, D. Srolovitz, G. Ackland, D. Sun, and M. Asta, Philos. Mag. 83, 3977 (2003).

    Article  Google Scholar 

  26. D. Sun, M. Asta, and J. Hoyt, Phys. Rev. B 69, 174103 (2004).

    Article  Google Scholar 

  27. Y. Watanabe, Y. Shibuta, and T. Suzuki, ISIJ Int. 50, 1158 (2010).

    Article  Google Scholar 

  28. G. Ackland and M. Finnis, Philos. Mag. A 54, 301 (1986).

    Article  Google Scholar 

  29. M. Finnis and J. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  Google Scholar 

  30. J. Liu and H. Dong, Mater. Sci. Eng. 33, 012113 (2012).

    MathSciNet  Google Scholar 

  31. J. Liu, R. Davidchack, and H. Dong, Comput. Mater. Sci. 74, 92 (2013).

    Article  Google Scholar 

  32. G. Ackland, M. Mendelev, D. Srolovitz, S. Han, and A. Barashev, J. Phys. 16, S2629 (2004).

    Google Scholar 

  33. B.-J. Lee, M. Baskes, H. Kim, and Y.K. Cho, Phys. Rev. B 64, 184102 (2001).

    Article  Google Scholar 

  34. M. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  Google Scholar 

  35. T. Lee, M.I. Baskes, S.M. Valone, and J. Doll, J. Phys. 24, 225404 (2012).

    Google Scholar 

  36. C.-L. Kuo and P. Clancy, Surf. Sci. 551, 39 (2004).

    Article  Google Scholar 

  37. G. Potirniche, M. Horstemeyer, G. Wagner, and P. Gullett, Int. J. Plast 22, 257 (2006).

    Article  MATH  Google Scholar 

  38. S. Brazovskii, Sov. J. Exp. Theor. Phys. 41, 85 (1975).

    Google Scholar 

  39. J. Swift and P. Hohenberg, Phys. Rev. A 15, 319 (1977).

    Article  Google Scholar 

  40. K.R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett. 80, 245701 (2002).

    Article  Google Scholar 

  41. N. Provatas and K. Elder, Phase-field Methods in Materials Science and Engineering (Weinheim: Wiley-VCH, 2010).

  42. B. Jelinek, S. Groh, M. Horstemeyer, J. Houze, S. Kim, G. Wagner, A. Moitra, and M. Baskes, Phys. Rev. B 85, 245102 (2012).

    Article  Google Scholar 

  43. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  MATH  Google Scholar 

  44. S. Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  45. W.G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  Google Scholar 

  46. Y. Shibuta and T. Suzuki, J. Chem. Phys. 129, 144102 (2008).

    Article  Google Scholar 

  47. Q. Shu, Y. Yang, Y.-T. Zhai, D. Sun, H. Xiang, and X. Gong, Nanoscale 4, 6307 (2012).

    Article  Google Scholar 

  48. J. Morris, C. Wang, K. Ho, and C. Chan, Phys. Rev. B 49, 3109 (1994).

    Article  Google Scholar 

  49. J.R. Morris and X. Song, J. Chem. Phys. 116, 9352 (2002).

    Article  Google Scholar 

  50. D. Sun, M. Asta, and J. Hoyt, Phys. Rev. B 69, 024108 (2004).

    Article  Google Scholar 

  51. Y.N. Osetsky and A. Serra, Phys. Rev. B 57, 755 (1998).

    Article  Google Scholar 

  52. A.T. Dinsdale, CALPHAD 15, 317 (1991).

    Article  Google Scholar 

  53. G. Ackland, D. Bacon, A. Calder, and T. Harry, Philos. Mag. A 75, 713 (1997).

    Article  Google Scholar 

  54. A. Carlsson, Solid State Phys. 43, 1 (1990).

    Google Scholar 

  55. M. Müller, P. Erhart, and K. Albe, J. Phys. 19, 326220 (2007).

    Google Scholar 

  56. G. Gutiérrez and B. Johansson, Phys. Rev. B 65, 104202 (2002).

    Article  Google Scholar 

  57. Y. Waseda and S. Tamaki, Philos. Mag. 32, 273 (1975).

    Article  Google Scholar 

  58. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).

    Article  Google Scholar 

  59. W. Tyson and W. Miller, Surf. Sci. 62, 267 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for computer time allocations provided by the Extreme Science and Engineering Discovery Environment (XSEDE) and the High Performance Computing Collaboratory (HPC2) at Mississippi State University through the Center for Advanced Vehicular Systems (CAVS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Asle Zaeem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asadi, E., Asle Zaeem, M. & Baskes, M.I. Phase-Field Crystal Model for Fe Connected to MEAM Molecular Dynamics Simulations. JOM 66, 429–436 (2014). https://doi.org/10.1007/s11837-013-0845-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0845-3

Keywords

Navigation