Skip to main content
Log in

High Steady Magnetic Field Processing of Functional Magnetic Materials

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The materials science community has been enriched for some decades now by the “magneto-science” approach, which consists of applying a magnetic field during material processing. The development of anisotropic properties by applying a steady magnetic field is now a well-established effect in the material processing of magnetic substances, which benefits from the unidirectional and static nature of the field delivered by superconducting magnets. Among other effects, magnetic anisotropy in functional magnetic materials, which arises from the alignment of magnetic moments under external field, can be developed at various structural scales. Magnetic ordering, magnetic patterning, and texturation are at the origin of this anisotropy development. Texture is developed in materials from magnetic orientation due to magnetic forces and torques or from stored energy. In metals and alloys, for instance, this effect can occur either in their liquid state or during solid-state thermomagnetic treatments and can thus impact significantly the material functional magnetic properties. Today’s improved superconducting magnet technology allows higher field intensities to be delivered more easily (1 T up to several tens of Teslas) and enables researchers to gather evidence on magnetic field effects that were formerly thought to be negligible. The magneto-thermodynamic effect is one of them and involves the magnetization energy as an additional parameter to tailor microstructures. Control of functional properties can thus result from magnetic monitoring of the phase transformation, and kinetics can be impacted by the magnetic energy contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Debray and P. Frings, Compt. Rend. Phys. 14, 1 (2013).

    Article  Google Scholar 

  2. H. Pender and R.L. Jones, Phys. Rev. 1, 259 (1913).

    Article  Google Scholar 

  3. R. Smoluchowski and R.W. Turner, J. Appl. Phys. 20, 745 (1949).

    Article  Google Scholar 

  4. V.S. Bhandary and B.D. Cullity, Trans. Met. Soc. AIME 224, 1194 (1962).

    Google Scholar 

  5. H.O. Martikainen and V.K. Lindroos, Scand. J. Metall. 10, 3 (1981).

    Google Scholar 

  6. A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi, and T. Fujii, Mater. Sci. Eng. A 173, 293 (1993).

    Google Scholar 

  7. J.P. Birat and J. Chone, Ironmak. Steelmak. 6, 269 (1983).

    Google Scholar 

  8. S. Bodea, L. Vignon, R. Ballou, and P. Molho, Phys. Rev. Lett. 83, 2612 (1999).

    Article  Google Scholar 

  9. S. Asai, ISIJ Int. 47, 519 (2007).

    Article  Google Scholar 

  10. T. Kakeshita, K. Shimizu, S. Funada, and M. Date, Acta Metall. 33, 1381 (1985).

    Article  Google Scholar 

  11. T. Ando, N. Hirota, A. Satoh, and E. Beaugnon, J. Magn. Magn. Mater. 303, 39 (2006).

    Article  Google Scholar 

  12. P. de Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, and M. Ingold, Nature 349, 770 (1991).

    Article  Google Scholar 

  13. L. Néel, J. Phys. Radium 15, 225 (1954).

    Article  MATH  Google Scholar 

  14. S. Chikazumi and T. Oomura, J. Phys. Soc. Jpn. 10, 842 (1955).

    Article  Google Scholar 

  15. B. Frincu (Ph.D. Dissertation, Grenoble University, 2012).

  16. G. Herzer, Handbook of Magnetic Materials, vol. 10 (Amsterdam: Elsevier B.V., North Holland, 1997), pp. 415–462.

  17. S. Chikazumi, Physics of Ferromagnetism (New York: Wiley, 1964).

    Google Scholar 

  18. G. Diguet, E. Beaugnon, and J.Y. Cavaillé, J. Magn. Magn. Mater. 321, 396 (2009).

    Article  Google Scholar 

  19. H. Hosoda, S. Takeuchi, T. Inamura, and K. Wakashima, Sci. Technol. Adv. Mater. 5, 503 (2004).

    Article  Google Scholar 

  20. N. Scheerbaum, D. Hinz, O. Gutfleisch, K.-H. Mueller, and L. Schultz, Acta Mater. 55, 2707 (2007).

    Article  Google Scholar 

  21. J.E. Goldman and R. Schmolukowski, Phys. Rev. 80, 302 (1950).

    Article  Google Scholar 

  22. B.Z. Cui, K. Han, D.S. Li, H. Garmestani, J.P. Liu, N.M. Dempsey, and H.J. Schneider-Muntau, J. Appl. Phys. 100, 013902 (2006).

    Article  Google Scholar 

  23. H. Chiriac, M. Marinescu, K.H.J. Buschow, F.R. de Boer, and E. Brueck, J. Magn. Magn. Mater. 202, 22 (1999).

    Article  Google Scholar 

  24. B.Z. Cui, K. Han, H. Garmestani, J.H. Su, H.J. Schneider-Muntau, and J.P. Liu, Acta Mater. 53, 4155 (2005).

    Article  Google Scholar 

  25. B.Z. Cui, C.T. Yu, K. Han, J.P. Liu, H. Garmestani, M.J. Pechan, and H.J. Schneider-Muntau, J. Appl. Phys. 97, 10F308 (2005).

    Google Scholar 

  26. Y.K. Zhang, J. Gao, H. Yasuda, D.M. Herlach, and J.C. He, J. Alloy. Compd. 493, L8 (2010).

    Article  Google Scholar 

  27. H. Kato, K. Koyama, and K. Takahashi, J. Appl. Phys 109, 07A726 (2011).

  28. H. Fujii, V.A. Yardley, T. Matsuzaki, and S. Tsurekawa, J. Mater. Sci. 4, 3837 (2008).

    Article  Google Scholar 

  29. H. Fujii, S. Tsurekawa, T. Matsuzaki, and T. Watanabe, Phil. Mag. Lett. 86, 13 (2006).

    Article  Google Scholar 

  30. M. Mayaguchi and Y. Tanimoto, Magnetoscience (Tokyo: Kodansha, 2006), p. 193.

    Google Scholar 

  31. S. Rivoirard, V.M.T.S. Barthem, R. Bres, E. Beaugnon, P.E.V. de Miranda, and D. Givord, J. Appl. Phys. 104, 043915 (2008).

    Article  Google Scholar 

  32. R. Tournier and E. Beaugnon, Sci. Technol. Adv. Mater. 10, 14501 (2009).

    Article  Google Scholar 

  33. B.A. Legrand, D. Chateigner, R. Perrier de la Bathie, and R. Tournier, J. Magn. Magn. Mater. 173, 20 (1997).

    Article  Google Scholar 

  34. P. Courtois, R. Perrier de la Bâthie, and R. Tournier, J. Magn. Magn. Mater. 153, 224 (1996).

    Article  Google Scholar 

  35. C. Wang, Y.S. Lai, C.C. Hsieh, W.C. Chang, H.W. Chang, and A.C. Sun, J. Appl. Phys. 109, 07A715 (2011).

    Google Scholar 

  36. M. Bonvalot, P. Courtois, P. Gillon, and R. Tournier, J. Magn. Magn. Mater. 151, 283 (1995).

    Article  Google Scholar 

  37. M. Enomoto, H. Guo, Y. Tazuke, Y.R. Abe, and M. Shimotomai, Metall. Mater. Trans. A A32, 445 (2001).

    Article  Google Scholar 

  38. M.C. Gao, T.A. Bennett, A.D. Rollett, and D.E. Laughlin, J. Phys. D Appl. Phys. 39, 2890 (2006).

    Article  Google Scholar 

  39. H. Guo and M. Enomoto, Mater. Trans. JIM 41, 911 (2000).

    Google Scholar 

  40. S. Rivoirard, T. Garcin, F. Gaucherand, O. Bouaziz, and E. Beaugnon, J. Phys.: Conf. Series 51, 541 (2006).

    Article  Google Scholar 

  41. X.J. Hao and H. Ohtsuka, Mater. Trans. 45, 2622 (2004).

    Article  Google Scholar 

  42. T. Kakeshita and T. Fukuda, J. Phys.: Conf. Series 156, 012012 (2009).

    Article  Google Scholar 

  43. T. Garcin, S. Rivoirard, C. Elgoyhen, and E. Beaugnon, Acta Mater. 58, 2026 (2010).

    Article  Google Scholar 

  44. K.A. Jackson, Kinetics Processes (Weinheim: Wiley-VCH Verlag GmbH & Co, KGaA, 2004), p. 263.

  45. J.J. Croat, J. Appl. Phys. 53, 4304 (1982).

    Article  Google Scholar 

  46. G. Schneider, G. Martinek, H.H. Stadelmaier, and G. Peztow, Mater. Lett. 7, 215 (1988).

    Article  Google Scholar 

  47. G. Kumar, P. Kerschl, U.K. Roessler, K. Nenkov, K.H. Mueller, and L. Schultz, J. Appl. Phys. 99, 08904 (2006).

    Google Scholar 

  48. C.J. Li, H. Yang, Z. Ren, W. Ren, and Y. Wu, J. Alloy. Compd. 505, 108 (2010).

    Article  Google Scholar 

  49. W.V. Youdelis and J.R. Cahoon, Can. J. Phys. 48, 805 (1970).

    Article  Google Scholar 

  50. R. Tournier, Sci. Technol. Adv. Mater. 10, 014607 (2009).

    Article  Google Scholar 

  51. I. Yamamoto, M. Yamaguchi, T. Goto, and S. Miura, J. Alloy. Compd. 231, 205 (1995).

    Article  Google Scholar 

  52. M. Yamaguchi, T. Takamune, and T. Ohta, J. Less Common Met. 88, 195 (1982).

    Article  Google Scholar 

  53. O. Gutfleisch and I.R. Harris, J. Phys. D Appl. Phys. 29, 225 (1996).

    Article  Google Scholar 

  54. S. Liesert, D. Fruchart, P. De Rango, S. Rivoirard, J.L. Soubeyroux, R. Perrier De La Bâthie, and R. Tournier, J. Alloy. Compd. 262, 366 (1997).

    Article  Google Scholar 

  55. S. Liesert, P. de Rango, J.L. Soubeyroux, D. Fruchart, and R. Perrier de la Bâthie, J. Magn. Magn. Mater. 157, 57 (1996).

    Article  Google Scholar 

  56. I. Popa (Ph.D. Dissertation, Grenoble University, 2004).

Download references

Acknowledgements

The support of the Agence Nationale de la Recherche (France), the European Union, the French Ministry of Education and Research, the Centre National de la Recherche Scientifique, and various industrial partners is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Rivoirard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivoirard, S. High Steady Magnetic Field Processing of Functional Magnetic Materials. JOM 65, 901–909 (2013). https://doi.org/10.1007/s11837-013-0619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0619-y

Keywords

Navigation