Skip to main content
Log in

A Framework of Growing Crystalline Nanorods

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The growth of crystalline nanorods has become a common practice in the absence of a solid framework, in either theoretical or conceptual form. This article presents such a framework and puts it in historical perspective of a broader field of crystal growth. This framework derives from three scientific advancements in crystal growth, with focus on multiple-layer surface steps: (I) the diffusion barrier of adatoms down multiple-layer surface steps, (II) the formation and stability of multiple-layer surface steps, and (III) the dimension of surface facets that are bounded by competing monolayer and multiple-layer surface steps. While this framework has only a partial foundation of theoretical formulation, it is more complete conceptually. As an example of impact, this framework predicts that growth of Al nanorods is not feasible using physical vapor deposition at ambient conditions; this prediction has not been proven wrong by any available experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.B. He, G.R. Li, Z.L. Wang, Y.N. Ou, and Y.X. Tong, J. Phys. Chem. C 114, 19175 (2010).

    Article  Google Scholar 

  2. S.H. Baek, B.Y. Noh, I.K. Park, and J.H. Kim, Nanoscale Rec. Lett. 7, 1 (2012).

    Article  Google Scholar 

  3. K. Robbie and M.J. Brett, J. Vac. Sci. Technol. A 15, 1460 (1997).

    Article  Google Scholar 

  4. J. Wang, H.C. Huang, S.V. Kesapragada, and D. Gall, Nano Lett. 5, 2505 (2005).

    Article  Google Scholar 

  5. S.P. Stagon, H.C. Huang, J.K. Baldwin, and A. Misra, Appl. Phys. Lett. 100, 061601-1 (2012).

    Article  Google Scholar 

  6. W.K. Burton, N. Cabrera, and F.C. Frank, Philos. Trans. R. Soc. Lond. A 243, 299 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Liu, J. Tersoff, and M.G. Lagally, Phys. Rev. Lett. 80, 1268 (1998).

    Article  Google Scholar 

  8. J. Tersoff, A.W. Denier van der Gon, and R.M. Tromp, Phys. Rev. Lett. 72, 266 (1994).

    Article  Google Scholar 

  9. J. Krug, Phys. A 313, 47 (2002).

    Article  Google Scholar 

  10. G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44, 1039 (1966).

    Article  Google Scholar 

  11. R.L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966).

    Article  Google Scholar 

  12. L.G. Zhou and H.C. Huang, Phys. Rev. Lett. 101, 266102-1 (2008).

    Google Scholar 

  13. S.J. Liu, H.C. Huang, and C.H. Woo, Appl. Phys. Lett. 80, 3295 (2002).

    Article  Google Scholar 

  14. M.G. Lagally and Z. Zhang, Nature 417, 907 (2002).

    Article  Google Scholar 

  15. S.K. Xiang and H.C. Huang, Appl. Phys. Lett. 92, 101923-1 (2008).

    Google Scholar 

  16. R. Bruinsma and A. Zangwill, J. Phys. Paris 47, 2055 (1986).

    Google Scholar 

  17. F. Baletto, C. Mottet, and R. Ferrando, Surf. Sci. 446, 31 (2000).

    Article  Google Scholar 

  18. R.X. Zhang and H.C. Huang, Appl. Phys. Lett. 98, 221903-1 (2011).

    Google Scholar 

  19. L.G. Zhou and H.C. Huang, Appl. Phys. Lett. 100, 141605-1 (2012).

    Google Scholar 

  20. X.B. Niu and H.C. Huang, to be published (2012).

Download references

Acknowledgements

This author gratefully acknowledges financial support from Department of Energy Office of Basic Energy Science (DE-FG02-09ER46562), National Science Foundation (CMMI-0856426 and DMR-0906349), and Defense Threat Reduction Agency (HDTRA1-09-1-0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchen Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H. A Framework of Growing Crystalline Nanorods. JOM 64, 1253–1257 (2012). https://doi.org/10.1007/s11837-012-0432-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0432-z

Keywords

Navigation