Skip to main content

Advertisement

Log in

Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae

  • Precious Metals Extraction / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the fungus Hormoconis resinae was screened from soil near a refinery and was found to produce stable gold nanoparticles extracellularly. The kinetics of the reaction was studied using UV-Vis spectroscopy and was further characterized by x-ray diffraction, energy dispersive x-ray (EDX) analysis, and high-resolution transmission electron microscopy. These analyses revealed that the gold nanoparticles are spherical and in nano-regime. The most important feature of Hormoconis resinae fungi is the following fact: they have a widespread presence in soil and can produce huge biomass. Such a cheap source of material gives the opportunity for cost-effective preparation of various gold-based nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Stephen and S.J. Maenaughton, Curr. Opin. Biotechnol., 10 (1999), pp. 230–233.

    Article  CAS  PubMed  Google Scholar 

  2. R.K. Mehra and D.R. Winge, J. Cell. Biochem., 45 (1991), pp. 30–40.

    Article  CAS  PubMed  Google Scholar 

  3. G. Southam and T.J. Beveridge, Geochim. Cosmochim. Acta, 58 (1994), pp. 4527–4530.

    Article  CAS  ADS  Google Scholar 

  4. D. Fortin and T.J. Beveridge, in Biomineralisation, ed. E. Baeuerlein (Verlag, Germany: Wiley-VCH, 2000), p. 294.

    Google Scholar 

  5. M. Sastry, A. Ahmad, M.I. Khan, and R. Kumar, in Nanobiotechnology, ed. C.M. Niemeyer and C.A. Mirkin (Weinheim, Germany: Wiley-VCH, 2004), pp. 126–135.

    Google Scholar 

  6. S. Mann, Biomimetic Materials Chemistry (New York: VCH, 1996).

    Google Scholar 

  7. T.J. Beveridge and R.G.E. Murray, J. Bacteriol., 141 (1980), pp. 876–877.

    CAS  PubMed  Google Scholar 

  8. P. Mukherjee et al., Angew. Chem., 40 (2001), pp. 3585–3588.

    Article  CAS  Google Scholar 

  9. M. Sastry, A. Ahmad, N.I. Islam, and R. Kumar, Current Sci., 85 (2003), pp. 162–170.

    CAS  Google Scholar 

  10. P. Mukherjee et al., ChemBioChem., 5 (2002), pp. 461–463.

    Article  Google Scholar 

  11. A. Ahmad et al., Colloids and Surfaces B: Biointerfaces, 28 (2003), pp. 313–318.

    Article  CAS  Google Scholar 

  12. N. Duran et al., J. Nanobiotechnol., 3 (2005), pp. 8–15.

    Article  Google Scholar 

  13. D. Mandal et al., Appl. Microbiol. Biotechnol., 69 (2006), pp. 485–492.

    Article  CAS  PubMed  Google Scholar 

  14. J. L. Gardea-Torresdey et al., Nano Lett., 2 (2002), pp. 397–401.

    Article  CAS  ADS  Google Scholar 

  15. A. Ahmad et al., J. Am. Chem. Soc., 124 (2002), pp. 12108–12109.

    Article  CAS  PubMed  Google Scholar 

  16. A. Ahmad et al., Langmuir, 19 (2003), pp. 3550–3553.

    Article  CAS  Google Scholar 

  17. A.N. Mishra et al., NATCHEE 2010, Proceedings of International Conference, ed. L.D. Khemani and S. Dass (India: Tata McGraw-Hill, 2010), pp. 205–210.

    Google Scholar 

  18. R. Varshney et al., Digest J. Nanomat. and Biostruct., 4 (2009), pp. 349–355.

    Google Scholar 

  19. S.S. Nigam, in Laboratory Test Methods in Microbiology (Issued by Defence Research Laboratory (Materials), Ministry of Defence, Kanpur, 1965).

    Google Scholar 

  20. Anonymous, HERB, IMI, Handbook (Commonwealth Mycological Institute, Ferry Lane, Kew, Surrey, England, 1960).

  21. V. Armendariz et al., J. Nanoparticle Res., 6 (2004), pp. 377–382.

    Article  CAS  Google Scholar 

  22. S. Senapati et al., Small, 1 (2005), pp. 517–520.

    Article  CAS  PubMed  Google Scholar 

  23. He Shiying et al., Materials Letters, 61 (2007), pp. 3984–3987.

    Article  CAS  Google Scholar 

  24. P. Mulvaney, Langmuir, 12 (1996), pp. 788–800.

    Article  CAS  Google Scholar 

  25. K.L. Kelly et al., J. Phys. Chem. B, 107 (2003), pp. 668–677.

    Article  CAS  Google Scholar 

  26. M.A. EL-Sayed, Acc. Chem. Res., 34 (2001), pp. 257–264.

    Article  CAS  PubMed  Google Scholar 

  27. M. Maye et al., J. Am. Chem. Soc., 124 (2002), pp. 4958–4959.

    Article  CAS  PubMed  Google Scholar 

  28. T.J. Norman et al., J. Phys. Chem. B, 106 (2002), pp. 7005–7012.

    Article  CAS  Google Scholar 

  29. S. Shiv Shankar et al., J. Mater. Chem., 13 (2003), pp. 1822–1826.

    Article  Google Scholar 

  30. J.W. Jeffrey, Methods in Crystallography (New York: Academic Press, 1971).

    Google Scholar 

  31. S. Shiv Shankar et al., Nat. Mater., 3 (2004), pp. 482–488.

    Article  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Pasricha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, A.N., Bhadauria, S., Gaur, M.S. et al. Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae . JOM 62, 45–48 (2010). https://doi.org/10.1007/s11837-010-0168-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0168-6

Keywords

Navigation