Skip to main content

Advertisement

Log in

Silicon and germanium nanowires: Growth, properties, and integration

  • Low-dimensional Nanomaterials
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Semiconducting nanowires are an area of widespread interest in nanomaterials research because of the ability to fabricate one-dimensional structures with tailored functionalities not available in bulk materials. Silicon and germanium nanowires have received particular attention because of the important role played by these materials systems in contemporary microelectronics and their potential for applications ranging from novel electronic devices to molecular level sensing and to solar energy harvesting. This paper provides an overview of the widely used vapor-liquid-solid technique for nanowire growth and its application to our recent silicon and germanium nanowire studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Thelander et al., Materials Today, 9 (2006), p. 28.

    Article  CAS  Google Scholar 

  2. S.A. Dayeh, Semiconductor Science and Technology, 25 (2010), p. 024004.

    Article  ADS  Google Scholar 

  3. D.J. Sirbuly et al., Proc. Nati. Acad. Sci., 102 (2005), p. 7800.

    Article  CAS  ADS  Google Scholar 

  4. Y. Li et al., Materials Today, 9(10) (2006), p. 18.

    Article  CAS  Google Scholar 

  5. Z. Li et al., Nano Lett., 4 (2004), p. 245.

    Article  ADS  Google Scholar 

  6. G. Zheng et al., Nature Biotech., 23 (2005), p. 1294.

    Article  CAS  Google Scholar 

  7. L. Tsakalakos et al., Appi. Phys. Lett., 91 (2007), p. 33117.

    Article  Google Scholar 

  8. B.M. Kayes, H.A. Atwater, and N.S. Lewis, J. Appi. Phys., 97 (2005), p. 114302.

    Article  ADS  Google Scholar 

  9. A.I. Hochbaum et al., Nature, 451 (2008), p. 163.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. A.I. Boukai et al., Nature, 451 (2008), p. 168.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. CK. Chan et al., Nature Nanotech., 3 (2008), p. 31.

    Article  CAS  ADS  Google Scholar 

  12. N. Wang, Y. Cal, and R.Q. Zhang, Mater. Sci. and Eng., R60 (2008), p. 1.

    CAS  Google Scholar 

  13. N. Skold et al., Nano Lett., 5 (2005), p. 1943.

    Article  PubMed  ADS  Google Scholar 

  14. ZI. Wang, Adv. Mater., 19 (2007), p. 889.

    Article  CAS  Google Scholar 

  15. M.R Anantram and F. Leonard, Reports on Progress in Phys., 69 (2006), p. 507.

    Article  CAS  ADS  Google Scholar 

  16. S.B. Sinnott and R. Andrews, Critical Reviews in Solid State and Materials Sciences, 26(3) (2001), pp. 45–249.

    Article  Google Scholar 

  17. R.S. Wagner and WC. Ellis, Appi. Phys. Lett., 4 (1964), p. 89.

    Article  CAS  ADS  Google Scholar 

  18. H. Adhikari et al., ACS Nano, 1 (2007), p. 415.

    Article  CAS  PubMed  Google Scholar 

  19. V. Schmidt et al., Adv. Mater., 21 (2009), pp. 2681–2702.

    Article  CAS  Google Scholar 

  20. J.B. Hannon et al., Nature, 440 (2006), p. 69.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. J. Dailey et al., J. Appi. Phys., 96 (2004), p. 7556.

    Article  CAS  ADS  Google Scholar 

  22. E.I. Givargizov, J. Crys. Growth, 31 (1975), p. 20.

    Article  CAS  ADS  Google Scholar 

  23. S.G. Choi et al., unpublished work (2010).

  24. P. Madras, E. Dailey, and J. Drucker, Nano Lett., 9 (2009), p. 3826.

    Article  CAS  PubMed  Google Scholar 

  25. D. Wang, B.A. Sheriff, and J.R. Heath, Small, 2 (2006), p. 1153.

    Article  CAS  PubMed  Google Scholar 

  26. W. Lu et al., Proc. Natl. Acad. Sci., 102 (2005), p. 10046.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. J.G. Swadener and ST. Picraux, J. Appi. Phys., 105 (2009), p. 044310.

    Article  ADS  Google Scholar 

  28. WD. Nix, MRS Bulletin, 34 (2009), p. 82.

    CAS  Google Scholar 

  29. Y.Y. Wu, R. Fan, and P. Yang, Nano Lett., 2 (2002), p. 83.

    Article  CAS  ADS  Google Scholar 

  30. T.E. Clark et al., Nano Lett., 8 (2008), p. 1246.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. S.A. Dayeh, P. Manandhar, and ST. Picraux, unpublished work (2010).

  32. D.E. Perea et al., Nature Nanotech, 4 (2009), p. 315.

    Article  CAS  ADS  Google Scholar 

  33. E. Tutuc, et al., Nano Lett., 6 (2006), p. 2070.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. B. Tian et al., Nature, 449 (2007), p. 885.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Ol. Muskins et al., Nano Lett., 8 (2008), p. 2638.

    Article  ADS  Google Scholar 

  36. J. Appenzeller et al., IEEE Trans. Elect. Devices, 55 (2008), p. 2827.

    Article  CAS  ADS  Google Scholar 

  37. S. Ingole et al., J. Appi. Phys., 103 (2008), p. 104302.

    Article  ADS  Google Scholar 

  38. S. Ingole et al., IEEE Trans. Elect. Devices, 55 (2008), p. 2931.

    Article  CAS  ADS  Google Scholar 

  39. F. Leonard et al., Phys. Rev. Lett., 102, (2009) p. 106805.

    Article  PubMed  ADS  Google Scholar 

  40. R. Rosario et al., J. Phys. Chem. B Letters, 108 (2004), p. 12640.

    CAS  Google Scholar 

  41. N.A. Melosh et al., Science, 300 (2003), p. 112.

    Article  CAS  PubMed  ADS  Google Scholar 

  42. M. Li et al., Nature Nanotech., 3 (2008), p. 88.

    Article  CAS  ADS  Google Scholar 

  43. S. Ingole et al., Appi. Phys. Lett., 91 (2007), p. 033106.

    Article  ADS  Google Scholar 

  44. See, for example, P. Nguyen et al., Afano Left, 4 (2004), p. 651.

    CAS  ADS  Google Scholar 

  45. M.T. Bjork et al., Appi. Phys. Lett., 90 (2007), p. 142110.

    Article  ADS  Google Scholar 

  46. Y Sierra-Sastre et al., J. Amer. Chem. Soc., 130 (2008), p. 10488.

    Article  CAS  Google Scholar 

  47. S.A. Dayeh et al., submitted to Nature (2010).

  48. P. Manandhar and ST. Picraux, submitted to Nano Letters (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tom Picraux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picraux, S.T., Dayeh, S.A., Manandhar, P. et al. Silicon and germanium nanowires: Growth, properties, and integration. JOM 62, 35–43 (2010). https://doi.org/10.1007/s11837-010-0057-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0057-z

Keywords

Navigation