Skip to main content
Log in

Micro-compression testing of fcc metals: A selected overview of experiments and simulations

  • Nanomechanical Characterization
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Micro-compression tests allow for the direct measurement of stress-strain behavior in volumes of material that have microscale dimensions. Initial studies worldwide have focused on the exploration of size-scale effects, where sample dimensions at the micrometer-and sub-micrometer scale can dramatically affect the fundamental processes of plastic deformation. Importantly, this scale of test volume can be directly modeled using state-of-the-art discrete dislocation simulations, the results of which have been essential to understanding the changes that can occur to dislocation mechanisms within small volumes. This combination of miniaturized testing and modeling that closely mimics these experiments provides a new pathway to characterize plastic fl ow on a highly localized basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gil Sevillano, I. Ocana Arizcorreta, and L.P. Kubin, Mater. Sci. Eng. A, 309–310 (2001), pp. 393–405.

    Google Scholar 

  2. M.A. Haque and M.T.A. Saif, Scripta Materialia, 47 (2002), pp. 863–867.

    Article  CAS  Google Scholar 

  3. H.D. Espinosa, B.C. Prorok, and M. Fischer, J. Mech. Phys. Solids, 51 (2003), pp. 47–67.

    Article  ADS  CAS  Google Scholar 

  4. Y. Zhu and H.D. Espinosa, PNAS, 102 (2005), pp. 14503–14508.

    Article  PubMed  ADS  CAS  Google Scholar 

  5. D.Y.W. Yu and F. Spaepen, J. Appl. Phys., 95 (2004), pp. 2991–2997.

    Article  ADS  CAS  Google Scholar 

  6. M.D. Uchic et al., Mater. Res. Soc. Symp. Proc., 753 (2003), pp. BB1.4.1–1.4.6.

    Google Scholar 

  7. M.D. Uchic et al., Science, 305 (2004), pp. 986–989.

    Article  PubMed  CAS  Google Scholar 

  8. M.D. Uchic and D.M. Dimiduk, Mater. Sci. Eng. A, 400–401 (2005), pp. 268–278.

    Google Scholar 

  9. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy, Acta Materialia, 53 (2005), pp. 4065–4077.

    Article  CAS  Google Scholar 

  10. J.R. Greer and W.D. Nix, Phys. Rev. B, 73 (2006), p. 245410.

    Article  ADS  Google Scholar 

  11. H. Bei et al., Scripta Materialia, 57 (2007), pp. 397–400.

    Article  CAS  Google Scholar 

  12. D. Kiener et al., Mater. Sci. Eng. A, 459 (2007), pp. 262–272.

    Article  Google Scholar 

  13. C. Motz, T. Schoberl, and R. Pippan, Acta Materialia, 53 (2005), pp. 4269–4279.

    Article  CAS  Google Scholar 

  14. H. Bei et al., Appl. Phys. Lett., 91 (2007), p. 111915.

  15. Z.W. Shan et al., Nature Materials, 7 (2008), pp. 115–119.

    Article  PubMed  ADS  CAS  MathSciNet  Google Scholar 

  16. D.M. Norfleet et al., Acta Materialia, 56 (2008), pp. 2988–3001.

    Article  CAS  Google Scholar 

  17. C.P. Frick et al., Mater. Sci. Eng. A, 489 (2008), pp. 319–329.

    Article  Google Scholar 

  18. M.D. Uchic, P.A. Shade, and D.M. Dimiduk, “Plasticity of Micrometer-Scale Single Crystals in Compression: A Critical Review,” submitted for publication to Annual Reviews of Materials Research.

  19. C.A. Volkert and E.T. Lilleodden, “Size Effects in the Deformation of Sub-Micron Au Columns,” Phil. Mag., 86 (2006), pp. 5567–5579.

    Article  ADS  CAS  Google Scholar 

  20. K.S. Ng and A.H.W. Ngan, Acta Materialia, 56 (2008), pp. 1712–1720.

    Article  CAS  Google Scholar 

  21. D. Kiener et al., Adv. Eng. Mater., 8 (2006), pp. 1119–1125.

    Article  CAS  Google Scholar 

  22. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Materialia, 53 (2005), pp.1821–1830; Erratum, Acta Materialia, 54 (2006), p. 1705.

    Article  CAS  Google Scholar 

  23. D.M. Dimiduk et al., Science, 312 (2006), pp. 1188–1190.

    Article  PubMed  ADS  CAS  Google Scholar 

  24. M.D. Uchic et al., Scripta Materialia, 54 (2006), pp. 759–764.

    Article  CAS  Google Scholar 

  25. D.M. Dimiduk et al., Modelling Simul. Mater. Sci. Eng., 15 (2007), pp. 135–146.

    Article  ADS  CAS  Google Scholar 

  26. F.F. Csikor et al., Science, 318 (2007), pp. 251–254.

    Article  PubMed  ADS  CAS  Google Scholar 

  27. M. Zaiser et al., “Strain Bursts in Plastically Deforming Molybdenum Micro- and Nanopillars,” arXiv.org (Ithaca, NY: Cornell Unviersity, 2008), arXiv:0802.1843v1.

    Google Scholar 

  28. S. Brinckmann, J.Y. Kim, and J.R. Greer, Phys. Rev. Lett., 100 (2008), p. 155502.

    Article  PubMed  ADS  Google Scholar 

  29. S.I. Rao et al., Acta Mater., 56 (2008), pp. 3245–3259.

    Article  CAS  Google Scholar 

  30. S.I. Rao et al., Phil. Mag., 87 (2007), pp. 4777–4794.

    Article  ADS  CAS  Google Scholar 

  31. H. Tang, K.W. Schwarz, and H.D. Espinosa, Acta Materialia, 55 (2007), pp. 1607–1616.

    Article  CAS  Google Scholar 

  32. D. Weygand et al., Mater. Sci. Eng. A, 483 (2008), pp. 188–190.

    Article  Google Scholar 

  33. J. Senger et al., Scripta Materialia, 58 (2008), pp. 587–590.

    Article  CAS  Google Scholar 

  34. J. El-Awady, S.B. Biner, and N.M. Ghoniem, J. Mech. Phys. Solids, 56 (2008), pp. 2019–2035.

    Article  ADS  CAS  Google Scholar 

  35. J. El-Awady, M. Wen, and N.M. Ghoniem, “The Role of the Weakest-Link Mechanism in Controlling the Plasticity of Micropillars,” (2008), submitted for publication.

  36. H. Tang, K.W. Schwarz, and H.D. Espinosa, Phys. Rev. Lett., 100 (2008), p. 185503.

    Article  PubMed  ADS  CAS  Google Scholar 

  37. T.A. Parthasarathy et al., Scripta Materialia, 56 (2007), pp. 313–316.

    Article  CAS  Google Scholar 

  38. H. Bei et al., Acta Materialia, 56 (2008), pp. 4762–4770.

    Article  CAS  Google Scholar 

  39. D. Kiener et al., Acta Materialia, 56 (2008), pp. 580–592.

    Article  CAS  Google Scholar 

  40. O. Kraft and C.A. Volkert, “Size Effects on Deformation and Fatigue of Thin Films and Small Structures” (Paper presented at CAMTEC, Cambridge University, 2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Uchic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchic, M.D., Shade, P.A. & Dimiduk, D.M. Micro-compression testing of fcc metals: A selected overview of experiments and simulations. JOM 61, 36–41 (2009). https://doi.org/10.1007/s11837-009-0038-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0038-2

Keywords

Navigation