Skip to main content
Log in

Space fission reactor structural materials: Choices past, present, and future

  • Overview
  • Materials Issues in Advanced Nuclear Systems
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nuclear powered spacecraft will enable missions well beyond the capabilities of current chemical, radioisotope thermoelectric generator and solar technologies. The use of fission reactors for space applications has been studied for over 50 years. Structural material performance has often limited the potential performance of space reactors. Space fission reactors are an extremely harsh environment for structural materials with high temperatures, high neutron fields, potential contact with liquid metals, and the need for up to 15–20 year reliability with no inspection or preventative maintenance. Many different structural materials have been proposed. While all of those proposed meet many of the requirements for space reactor service, none satisfy all of them. However, continued development and testing may resolve these issues and provide qualified materials for fission reactors for space power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Dix and S.S. Voss, Space Nuclear Power Systems 1984, ed. M.S. El-Genk and M.D. Hoover (Malabar, FL: Orbit Book Company, 1985), p. 23.

    Google Scholar 

  2. C. Wiedemann et al., Advances in Space Research, 35 (2005), pp. 1290–1295.

    Article  ADS  CAS  Google Scholar 

  3. S.R. Greene, Proceedings of the Space Nuclear Conference 2005 (La Grange Park, IL: American Nuclear Society, 2005), p. 123.

    Google Scholar 

  4. Image reproduced from Y-12 Report, 1(1) (Summer 2004).

    Google Scholar 

  5. J. Ashcroft and C. Eshelman, DOE Report LM-05K188 (Washington, D.C.: Department of Energy, February 2006).

    Google Scholar 

  6. S.J. Zinkle and N.M. Ghoniem, Fusion Engrg. and Design, 51–52 (2000), p. 55.

    Article  Google Scholar 

  7. R.H. Cooper, Refractory Alloy Technologies for Space Nuclear Power Applications, CONF-8308130, ed. R.H. Cooper, Jr. and E.E. Hoffman (Washington, D.C.: U.S. DOE, Office of Science, January 1984), p. 14.

    Google Scholar 

  8. M.S. El-Genk and J.M. Tournier, Space Technology and Applications International Forum-STAIF 2004, Vol. 699 (Melville, NY: American Institute of Physics, 2004), p. 892.

    Google Scholar 

  9. G.E. Lucas, J. Nucl. Mater., 206 (1993), pp. 287–305.

    Article  CAS  Google Scholar 

  10. F.A. Garner, Nuclear Materials, Materials Science and Technology, vol. 10, ed. B.R.T. Frost (New York: VCH, 1994), pp. 419–543.

    Google Scholar 

  11. D.R. Harries, J. Nucl. Mater., 82 (1979), pp. 2–21.

    Article  CAS  Google Scholar 

  12. A.A.F. Tavassoli, J. Nucl. Mater., 302 (2002), pp. 73–88.

    Article  ADS  CAS  Google Scholar 

  13. K. Ehrlich, J. Konys, and L. Heikinheimo, J. Nucl. Mater., 327 (2004), pp. 140–147.

    Article  ADS  CAS  Google Scholar 

  14. S.J. Zinkle et al., Space Technology and Applications International Forum-STAIF 2002, Vol. 608 (Melville, NY: American Institute of Physics, 2002), p. 1063.

    Google Scholar 

  15. M.L. Grossbeck, K. Ehrlich, and C. Wassilew, J. Nucl. Mater., 174 (1990), pp. 264–281.

    Article  CAS  Google Scholar 

  16. F. Tavassoli, “Potential and Limits of Materials and Tools: Present Limits and Improvements” (Presentation at the E.U. Fusion Materials Assessment Meeting, Karlsruhe, Germany, 2001).

  17. J.J. Laidler and J.W. Bennett, Nucl. Eng. Int., 25(301) (July 1980), pp. 31–36.

    CAS  Google Scholar 

  18. R.W. Powell, HEDL-SA-811 (January 1976).

  19. J.L. Straalsund, R.W. Powell, and B.A. Chin, J. Nucl. Mater., 108–109 (1982), pp. 299–305.

    Article  Google Scholar 

  20. J.F. Bates and R.W. Powell, J. of Nucl. Mater., 102 (1981), pp. 200–213.

    Article  CAS  Google Scholar 

  21. S.J. Zinkle and F.W. Wiffen, Space Technology and Applications International Forum-STAIF 2004, Vol. 699 (Melville, NY: American Institute of Physics, 2004), pp. 733–740.

    Google Scholar 

  22. K.J. Leonard et al., in Ref. 3, p. 286.

    Google Scholar 

  23. C.E. Duty et al., in Ref. 3, p. 294

    Google Scholar 

  24. J.T. Busby et al., in Ref. 3, page 276.

    Google Scholar 

  25. E.J. Delgrosso, C.E. Carlson, and J.J. Kaminsky, J. Less-Common Metals, 12 (1967), pp. 173–201.

    Article  CAS  Google Scholar 

  26. D.C. Goldberg, G. Dicker, and S.A. Worcester, Nucl. Eng. Des., 22 (1972), pp. 95–123.

    Article  CAS  Google Scholar 

  27. R.A. Perkins, Proc. Symp. on Advanced Compact Reactor Systems (Washington D.C.: National Academy Press, 1983), pp. 282–325.

    Google Scholar 

  28. S.J. Zinkle, F.W. Wiffen, and J.R. DiStefano, TN Report ORNL/LTR/NR-JIMO/04-05 (Oak Ridge, TN: Oak Ridge National Lab., 2004), pp. 1–41.

    Google Scholar 

  29. J.T. Busby, K.J. Leonard, and S.J. Zinkle, accepted for publication in J. Nucl. Mater. (2006).

  30. R.H. Jones et al., J. of Nucl. Mater., 307–311 (2002), p. 1057.

    Article  Google Scholar 

  31. A. Kohyama et al., J. of Nucl. Mater., 283–287 (2000), p. 20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busby, J.T., Leonard, K.J. Space fission reactor structural materials: Choices past, present, and future. JOM 59, 20–26 (2007). https://doi.org/10.1007/s11837-007-0049-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0049-9

Keywords

Navigation