Skip to main content
Log in

Metal silicides: An integral part of microelectronics

  • Overview
  • Phase Transformations
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article presents an overview of the recent developments in the fundamental understandings and microelectronics applications of metal silicides. The synthesis and characterization of nanoscale silicides with potential applications in nanotechnology are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The International Technology Roadmap for Semiconductors, 2004 Update, Samiconductor Industry Association (San Jose, CA: Semiconductor Industry Association, 2004), http://public.itrs.net.

  2. L.J. Chen, editor, Silicide Technology for Integrated Circuits (London: IEE, 2004).

    Google Scholar 

  3. Z. Ma and L.H. Allen, “Titanium Silicide Technology,” in Ref. 2. pp. 49–76.

    Google Scholar 

  4. T. Kikkawa, K. Inoue, and K. Imai, “Cobalt Silicide Technology,” in Ref. 2,. pp. 77–94.

    Google Scholar 

  5. C. Lavoie, C. Detavernier, and P. Besser, “Nickel Silicide Technology,” in Ref. 2, pp. 95–152.

    Google Scholar 

  6. K.N. Tu and J.W. Mayer, Thin Films-Interdiffusion and Reactions, ed. J.M. Poate, K.N. Tu, and J.W. Mayer (New York: Wiley, 1978), pp. 359–405.

    Google Scholar 

  7. M.A. Nicolet and S.S. Lau, Materials Process and Characterization, ed. N.G. Einspruch and G.R. Larrabee (New York: Academic, 1983), pp. 329–464.

    Google Scholar 

  8. L.J. Chen, “Solid-State Amorphization in Metal-Si Systems,” Mater. Sci. Engineering R, 29 (2000), pp. 115–152.

    Article  Google Scholar 

  9. M.H. Wang and L.J. Chen, “Identification of the First Nucleated Phase in the Interfacial Reactions of Ultrahigh Vacuum Deposited Titanium Thin Films on Silicon,” Appl. Phys. Lett., 58 (1991), pp. 463–465.

    Article  CAS  Google Scholar 

  10. M.H. Wang and L.J. Chen, “Simultaneous Occurrence of Multiphases in the Interfacial Reactions of Ultrahigh Vacuum Deposited Titanium Thin Films on Silicon,” Appl. Phys. Lett., 59 (1991), pp. 2460–2462.

    Article  CAS  Google Scholar 

  11. J.M. Liang and L.J. Chen, “Auto-Correlation Analysis for the Determination of the Structure of Amorphous Interlayers in Ultrahigh Vacuum Deposited Molybdenum Thin Films on Silicon,” Appl. Phys. Lett., 64 (1994), pp. 1224–1226.

    Article  CAS  Google Scholar 

  12. C.A. Crider and J.M. Poate, “Growth-Rates for Pt2Si and PtSi Formation Under UHV and Controlled Impurity Atmospheres,” Appl. Phys. Lett., 36 (1980), pp. 417–419.

    Article  CAS  Google Scholar 

  13. J.Y. Cheng, H.C. Cheng, and L.J. Chen, “Cross-Sectional Transmission Electron Microscope Study of Growth Kinetics of MoSi2 on (001)Si,” J. Appl. Phys., 61 (1987), pp. 2218–2223.

    Article  CAS  Google Scholar 

  14. F.M. d’Heurle, “Nucleation of a New Phase from the Interaction of Two Adjacent Phases: Some Silicides,” J. Mater. Res., 3 (1988), pp. 167–195.

    CAS  Google Scholar 

  15. L.S. Hung et al., “Kinetics of TiSi2 Formation by Thin Ti Films on Si,” J. Appl. Phys., 54 (1983), pp. 5076–5080.

    Article  CAS  Google Scholar 

  16. L.J. Chen and K.N. Tu, “Epitaxial Growth of Metal Silicides on Silicon,” Mater. Sci. Reports, 6 (1991), pp. 53–140.

    Article  CAS  Google Scholar 

  17. R.T. Tung, “Epitaxial CoSi2 and NiSi2 Thin-Films,” Mater. Chem. Phys., 32 (1992), pp. 107–133.

    Article  CAS  Google Scholar 

  18. C.H. Luo, F.R. Chen, and L.J. Chen, “Atomic Structure of Si/TbSi2/(111)Si Double Heterostructure Interfaces,” J. Appl. Phys., 76 (1994), pp. 5744–5747.

    Article  CAS  Google Scholar 

  19. C.S. Chang, C.W. Nieh, and L.J. Chen, “Formation of Epitaxial NiSi2 of Single Orientation on (111)Si inside Miniature Size Oxide Openings,” Appl. Phys. Lett., 50 (1987), pp. 259–261.

    Article  CAS  Google Scholar 

  20. J.Y. Yew, L.J. Chen, and K. Nakamura, “Epitaxial Growth of NiSi2 on (111)Si inside 0.1–0.6 µm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett., 69 (1996), pp. 999–1001.

    Article  CAS  Google Scholar 

  21. J.Y. Yew et al., “Formation of CoSi2 on Selective Epitaxial Growth Silicon inside 0.1–0.6 µm Oxide Openings,” Appl. Phys. Lett., 69 (1996), pp. 3692–3694.

    Article  CAS  Google Scholar 

  22. T. Morimoto et al., “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep-Submicrometer Logic CMOS ULSI,” IEEE Trans. Electron Dev., 42 (1995), pp. 915–922.

    Article  CAS  Google Scholar 

  23. S.W. Lu, C.W. Nieh, and L.J. Chen, “Epitaxial Growth of NiSi2 on Ion-Implanted Silicon at 250–280°C,” Appl. Phys. Lett., 49 (1986), pp. 1770–1772.

    Article  CAS  Google Scholar 

  24. L.J. Chen et al., “The Effects of Implantation Impurities and Crystallinity on the Formation of Epitaxial NiSi2 on Silicon at 200–280°C,” J. Appl. Phys., 62 (1987), pp. 2789–2792.

    Article  CAS  Google Scholar 

  25. W.J. Chen and L.J. Chen, “Interfacial Reactions in Nickel Thin Films on BF2+-Implanted (001)Si,” J. Appl. Phys., 70 (1991), pp. 2628–2633.

    Article  CAS  Google Scholar 

  26. C.B. Murray et al., “Monodisperse 3D Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices,” MRS Bull., 26 (2001), pp. 985–991.

    CAS  Google Scholar 

  27. C.P. Li et al., “Metal Silicide/Silicon Nanowires from Metal Vapor Vacuum Arc Implantation,” Adv, Mater., 14 (2002), pp.218–221.

    Article  Google Scholar 

  28. G.M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science, 295 (2002), pp. 2418–2421.

    Article  CAS  Google Scholar 

  29. C.W. Liu and L.J. Chen, “SiGe Heterostructures,” Encyclopedia of Nanoscience and Nanotechnology, Vol. 9, ed. H.S. Nalwa (Stevenson Ranch, CA: American Scientific Publishers, 2004), pp. 775–792.

    Google Scholar 

  30. W.W. Wu et al., “Self-Assembled NiSi Quantum-dot Arrays on Epitaxial Si0.7Ge0.3 on (001)Si,” Appl. Phys. Lett., 83 (2003), pp. 1836–1838.

    Article  CAS  Google Scholar 

  31. L.J. Chen et al., “Nanostructures on Epitaxial SiGe Films on Silicon,” Electrochem. Soc. PV, 2004-02 (2004), pp. 241–252.

    CAS  Google Scholar 

  32. H.C. Chen et al., “Growth of Beta-FeSi2 Nanodots on Strained Si on Si-Ge,” Thin Solid Films, 461 (2004), pp. 44–47.

    Article  CAS  Google Scholar 

  33. H.F. Hsu et al., “Identification of the First Nucleated Phase in Submonolayer Ti Deposited on Si(111)-7×7 by Atomic Resolution Techniques,” Ultramicroscopy, 100 (2004), pp. 347–351.

    Article  CAS  Google Scholar 

  34. Y. Wu et al., “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature, 430 (2004), pp. 61–65.

    Article  CAS  Google Scholar 

  35. J.F. Lin et al., “Signatures of Quantum Transport In Self-Assembled Epitaxial Nickel Silicide Nanowires,” Appl. Phys. Lett., 85 (2004), pp. 281–283.

    Article  CAS  Google Scholar 

  36. C. Preinesberger et al., “Formation of Dysprosium Silicide Wires on Si(001),” J. Phys. D: Appl. Phys., 31 (1998), pp. L43-L45.

    Article  CAS  Google Scholar 

  37. Y. Chen et al., “Self-Assembled Growth of Epitaxial Erbium Disilicide Nanowires on Silicon (001),” Appl. Phys. Lett., 76 (2000), pp. 4004–4006.

    Article  CAS  Google Scholar 

  38. J. Nogami et al., “Self-Assembled Rare-Earth Silicide Nanowires on Si(001),” Phys. Rev. B, 63 (2001), p. 233305.

    Article  Google Scholar 

  39. Y. Chen, D.A.A. Ohlberg, and R.S. Williams, “Nanowires of Four Epitaxial Hexagonal Silicides Grown on Si(001),” J. Appl. Phys., 91 (2002), pp. 3213–3218.

    Article  CAS  Google Scholar 

  40. M. Stevens et al., “Structure and Orientation of Epitaxial Titanium Silicide Nanowires Determined by Electron Microdiffraction,” J. Appl. Phys., 93 (2003), pp. 5670–5674.

    Article  CAS  Google Scholar 

  41. W.C. Yang, H. Ade, and R.J. Nemanich, “Shape Stability of TiSi2 Islands on Si (111),” J. Appl. Phys., 95 (2004), pp. 1572–1576.

    Article  CAS  Google Scholar 

  42. S.H. Brongersma et al., “Stress-Induced Shape Transition of CoSi2 Clusters on Si(100),” Phys. Rev. Lett., 80 (1998), pp. 3795–3798.

    Article  CAS  Google Scholar 

  43. J.D. Carter, G. Cheng, and T. Guo, “Growth of Self-Aligned Crystalline Cobalt Silicide Nanostructures from Co Nanoparticles,” J. Phys. Chem. B, 108 (2004), pp. 6901–6904.

    Article  CAS  Google Scholar 

  44. Z. He, D.J. Smith, and P.A. Bennett, “Endotaxial Silicide Nanowires,” Phys. Rev. Lett., 93 (2004), p. 256102.

    Article  Google Scholar 

  45. K.L. Kavanagh, M.C. Reuter, and R.M. Tromp, “High Temperature Epitaxy of PtSi/Si(001),” J. Cryst. Growth, 173 (1997), pp. 393–401.

    Article  CAS  Google Scholar 

  46. H.F. Hsu et al., “Shape Transition in the Initial Growth of Titanium Silicide Clusters on Si(111),” Jpn. J. Appl. Phys., 43 (2004), pp. 4541–4544.

    Article  CAS  Google Scholar 

  47. J. Tersoff and R.M. Tromp, “Shape Transition in Growth of Strained Islands—Spontaneous Formation of Quantum Wires,” Phys. Rev. Lett., 70 (1993), pp. 2782–2785.

    Article  CAS  Google Scholar 

  48. K. Sekar et al., “Shape Transition in the Epitaxial-Growth of Gold Silicide in Au Thin-Films on Si(111),” Phys. Rev. B, 51 (1995), pp. 14330–14336.

    Article  CAS  Google Scholar 

  49. M.H. Wang and L.J. Chen, “Phase Formation in Ultrahigh Vacuum Deposited Titanium Thin Films on (001)Si,” J. Appl. Phys., 71 (1992), pp. 5918–5925.

    Article  CAS  Google Scholar 

  50. K. Ezoe et al., “Scanning Tunnelling Microscopy Study of Initial Growth of Titanium Silicide on Si(111),” Appl. Surf. Sci., 130–132 (1998), pp. 13–17.

    Article  Google Scholar 

  51. S.Y. Chen and L.J. Chen, unpublished work (2005).

  52. R.K.K. Chong et al., “Nitride-Mediated Epitaxy of CoSi2 on Si(001),” Appl. Phys. Lett., 82 (2003), pp. 1833–1835.

    Article  CAS  Google Scholar 

  53. R.T. Tung, “Oxide-Mediated Epitaxy of CoSi2 on Si(001),” Appl. Phys. Lett., 68 (1996), pp. 3461–3463.

    Article  CAS  Google Scholar 

  54. K.S. Lee et al., “Anomalous Growth and Characterization of Carbon-Coated Nickel Silicide Nanowires,” Chem. Phys. Lett., 384 (2004), pp. 215–218.

    Article  CAS  Google Scholar 

  55. C.A. Decker et al., “Directed Growth of Nickel Silicide Naowires,” Appl. Phys. Lett., 84 (2004), pp. 1389–1391.

    Article  CAS  Google Scholar 

  56. B. Xiang et al., “Synthesis and Field Emission Properties of TiSi2 Nanowires,” App. Phys. Lett., 86 (2005), pp. 243101–243103.

    Article  Google Scholar 

  57. Y.L. Chueh et al., “Synthesis and Characterization of Metallic TaSi2 Nanowires,” unpublished work (2005).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: A hypertext-enhanced version of this article is available on-line at www.tms.org/pubs/journals/JOM/0509/Chen0509.html.

For more information, contact L.J. Chen, National Tsing Hua University, Department of Materials Science and Engineering, Hsinchu, Taiwan, +886-3-573-1166; fax +886-3-571-8328; e-mail ljchen@mx.nthu.edu.tw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L.J. Metal silicides: An integral part of microelectronics. JOM 57, 24–30 (2005). https://doi.org/10.1007/s11837-005-0111-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0111-4

Keywords

Navigation