Skip to main content
Log in

Predicting interdendritic cavity defects during casting solidification

  • Research Summary
  • Computational Fluid Dynamics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Models for predicting interdendritic cavity defects, from which cracks can easily propagate, are necessary for the advancement of casting processes. This article shows that the location and severity of interdendritic cavity defects can be predicted using methods based on thresholds for interdendritic liquid metal flows. A short review on cavitation phenomena is presented and future directions are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kubo and R. D. Pehlke, Metall. Trans. B, 16B (June 1985), pp. 359–366.

    CAS  Google Scholar 

  2. E. Niyama et al., AFS Int. Cast Metals J., 6 (June 1981), pp. 16–22.

    Google Scholar 

  3. A.S. Sabau, Q. Han, and S. Viswanathan, Fluid Flow Phenomena in Metals Processing, ed. N. El-Kaddah (Warrendale, PA: TMS, 1999), pp. 403–413.

    Google Scholar 

  4. A.S. Sabau and S. Viswanathan, “Microporosity Prediction in Aluminum Alloy Castings,” Metallurgical and Materials Transactions B, 33B (2002), pp. 243–255.

    Article  CAS  Google Scholar 

  5. M. Rappaz, J.M. Drezet, and M. Gremaud, “A New Hot-Tearing Criterion,” Metallurgical and Materials Transactions A, 30 (1999), pp. 449–455.

    Article  Google Scholar 

  6. J.F. Grandfield, C.J. Davidson, and J.A. Taylor, “Application of a New Hot Tearing Analysis in Horizontal Direct-Chill Cast Magnesium Alloy AZ91,” Light Metals 2001, ed. J.L. Anjier (Warrendale, PA: TMS, 2001), pp. 207–213.

    Google Scholar 

  7. S.T. Suyitno, W.H. Kool, and L. Katgerman, Mater. Sci. Forum, 396–402 (2002) pp. 179–184.

    Article  Google Scholar 

  8. R.K. Avva, A.K. Singhal, and D.H. Gibson, Proceedings of the 1995 ASME/JSME Fluids Summer Annual Meeting, ASME FEDv 226 (New York, NY: ASME, 1995), pp. 63–70.

    Google Scholar 

  9. M.S. Barrow et al., “A Study of the Tensile Properties of Liquids in Confined Spaces Using an Atomic Force Microscope,” Proceedings: Mathematical, Physical and Engineering Sciences, 459 (2003), pp. 2885–2908.

    Article  Google Scholar 

  10. D.D. Joseph, “Cavitation and the State of Stress in a Flowing Liquid,” J. Fluid Mechanics, 366 (1998), pp. 367–378.

    Article  Google Scholar 

  11. I. Akhatov et al., “Collapse and Rebound of a Laser-Induced Cavitation Bubble,” Phys. Fluids, 13 (2001), pp. 2805–2819.

    Article  CAS  Google Scholar 

  12. R.P. Taleyarkhan and F. Moraga, Nuclear Engineering and Design, 207 (2001), pp. 181–188.

    Article  CAS  Google Scholar 

  13. P.R. Williams and R.L. Williams, “Cavitation of Liquids under Dynamic Stressing by Pulses of Tension,” J. Phys. D. Appl. Phys., 35 (17) (2002), pp. 2222–2230.

    Article  CAS  Google Scholar 

  14. C. Pequet, M. Gremaud, and M. Rappaz, Metall. Mater. Trans. A., 33 (2002), pp. 2095–2106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact A.S. Sabau, Oak Ridge National Laboratory, Metals and Ceramics Division, MS 6083, Building 4508, PO Box 2008, Oak Ridge, TN 37831-6083; (865) 241-5145; fax (865) 574-4358; e-mail sabaua@ornl.gov

About this article

Cite this article

Sabau, A.S. Predicting interdendritic cavity defects during casting solidification. JOM 56, 54–56 (2004). https://doi.org/10.1007/s11837-004-0035-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0035-4

Keywords

Navigation