Skip to main content
Log in

Cell operation and metal purity challenges for the use of inert anodes

  • Overview
  • Inert Anodes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Inert anodes demand a fairly high alumina content (>50% saturation) in the electrolyte, requiring a new way to control the alumina concentration. Probably the greatest challenge is how to tackle anode corrosion, which gives rise to metal contamination. All candidate oxide materials that can be used as components of inert anodes have a finite solubility in the electrolyte. Consequently, the anode materials will corrode slowly, and the corrosion products will be reduced into the aluminum produced. Even if the anode corrosion rate is slow (10–20 mm/year), an unacceptable contamination of the aluminum may result. Possible ways to reduce the contamination are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Hall, U.S. patent 400,664 (2 April 1889).

  2. S.P. Ray, 5 Light Metals 1986, ed. R.E. Miller (Warrendale, PA: TMS, 1986), pp. 287–298.

    Google Scholar 

  3. T.R. Beck, Light Metals 1994, ed. U. Mannweiler (Warrendale, PA: TMS, 1994), pp. 417–423.

    Google Scholar 

  4. C.W. Brown, Light Metals 2000, ed. R.D. Peterson (Warrendale, PA: TMS, 2000), pp. 391–396.

    Google Scholar 

  5. J.A. Sekhar et al., Light Metals 1997, ed. R. Huglen (Warrendale, PA: TMS, 1997), pp. 347–354.

    Google Scholar 

  6. H. Kvande and W. Haupin, JOM, this issue.

  7. E. Robert et al., J. Phys. Chem. B, 101 (1997), pp. 9447–9457.

    Article  CAS  Google Scholar 

  8. O.-A. Lorentsen, “Behaviour of Nickel, Iron and Copper by Application of Inert Anodes in Aluminium Electrolysis” (Dr.ing. thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000).

  9. H. Xiao et al., Metall. Mat. Trans. B, 27B (1996), pp. 185–193.

    Article  CAS  Google Scholar 

  10. R. Keller, S. Rolseth, and J. Thonstad, Electrochim. Acta, 42 (1997), pp. 1809–1817.

    Article  CAS  Google Scholar 

  11. J. Thonstad and E. Olsen, Molten Salt Forum, 5–6 (1998), pp. 297–303.

    Google Scholar 

  12. E. Olsen and J. Thonstad, J. Appl. Electrochem., 29 (1999), pp. 293–299.

    Article  CAS  Google Scholar 

  13. E. Olsen and J. Thonstad, J. Appl. Electrochem., 29 (1999), pp. 301–311.

    Article  CAS  Google Scholar 

  14. E. Olsen, “Nickel Ferrite and Tin Oxide as Anode Materials for Aluminium Electrolysis” (Dr.Ing. thesis, Norwegian Inst. Technology, Trondheim, Norway, 1995).

  15. T.A. Engh, Principles of Metal Refining (Oxford, U.K.: Oxford University Press, 1992).

    Google Scholar 

  16. J.J. Duruz et al., U.S. patent 4,614,569 (30 September 1986).

  17. J.K. Walker, J. Kinkoph, and C.K. Saha, J. Appl. Electrochem., 19 (1989), pp. 225–230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact J. Thonstad, Norwegian University of Science and Technology, Department of Materials Technology and Electrochemistry, N-7491 Trondheim, Norway; e-mail Jomar.Thonstad@chemibio.ntnu.no

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thonstad, J., Olsen, E. Cell operation and metal purity challenges for the use of inert anodes. JOM 53, 36–38 (2001). https://doi.org/10.1007/s11837-001-0207-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-001-0207-4

Keywords

Navigation