Skip to main content
Log in

Le modèle triadique des aspects neurobiologiques des comportements motivés à l’adolescence

Triadic model of the neurobiology of motivated behavior in adolescence

  • Psychopathologie de l’Enfance et de l’Adolescence / Child and Teenager Psychopathology
  • Published:
PSN

Résumé

Prérequis

Le comportement de prise de risque est une cause majeure de morbidité et de mortalité à l’adolescence. Dans le contexte d’une théorie de la décision et des comportements motivés (c’est-à-dire dirigé vers un but), la prise de risque reflète un motif de prise de décision qui favorise la sélection du déroulement de l’action avec des conséquences incertaines et potentiellement dangereuses. Nous présentons un modèle triadique basé sur les études de prise de décision chez l’adolescent réalisées en neuroscience.

Méthode

Nous passons en revue le rôle fonctionnel et les résultats neurodéveloppementaux de trois structures clés dans le contrôle du comportement motivé, c’est-à-dire l’amygdale, le noyau accumbens et le cortex préfrontal médian/ventral. Nous adoptons une approche neuroscientifique cognitive du comportement motivé qui utilise une fragmentation dans le temps de l’action motivée en général. Nous proposons des prévisions sur les contributions relatives des noeuds triadiques pendant les trois étapes de l’action motivée pendant l’adolescence.

Résultats

La propension à l’adolescence à rechercher la récompense-nouveauté, malgré l’incertitude et un danger potentiel, peut être expliquée par un système de récompense fort (noyau accumbens), un système d’évitement de la douleur faible (amygdale) et/ou un système de supervision inefficace (cortex préfrontal médian/ventral). Des perturbations dans ces systèmes peuvent contribuer à l’expression d’une psychopathologie, ce que nous illustrons avec la dépression et l’anxiété.

Conclusion

Un modèle triadique, intégré dans une carte organisée dans le temps de comportements motivés, peut fournir un cadre utile qui suggère des hypothèses spécifiques pour les bases neurales des comportements adolescents typiques et atypiques.

Abstract

Background

Risk-taking behavior is a major cause of morbidity and mortality in adolescence. In the context of decision theory and motivated (goal-directed) behavior, risk-taking reflects a pattern of decision-making that favors the selection of courses of action with uncertain and possibly harmful consequences. We present a triadic, neuroscience systems based model of adolescent decision-making.

Method

We review the functional role and neurodevelopmental findings of three key structures in the control of motivated behavior, i.e., amygdala, nucleus accumbens and medial/ventral prefrontal cortex. We adopt a cognitive neuroscience approach to motivated behavior that uses a temporal fragmentation of a generic motivated action. Predictions about the relative contributions of the triadic nodes to the three stages of a motivated action during adolescence are proposed.

Results

The propensity during adolescence for reward-novelty seeking in the face of uncertainty or potential harm might be explained by a strong reward system (nucleus accumbens), a weak harm avoidant system (amygdala) and/or an inefficient supervisory system (medial/ventral prefrontal cortex). Perturbations in these systems may contribute to the expression of psychopathology, illustrated here with depression and anxiety.

Conclusions

A triadic model, integrated in a temporally organized map of motivated behavior, can provide a helpful framework that suggests specific hypotheses of neural bases of typical and atypical adolescent behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Abramson LY, Metalsky GI, Alloy LB (1989) Hopelessness depression: a theory-based subtype of depression. Psychol Rev 96:358–372

    Article  Google Scholar 

  2. Aggleton JP (2000) The functional effects of amygdala lesions in humans: a comparison with findings from monkeys. In: The amygdala, second edition, a functional analysis (Second Edition ed., pp 485–504). Oxford University Press

  3. Amaral DG (2002) The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biol Psychiatry 51:11–17

    Article  PubMed  Google Scholar 

  4. Amaral DG, Price JL, Pikanen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed), The amygdala: neurobiological aspects of emotion, memory and mental dysfunction (pp 1–66). NY, Wiley-Liss

    Google Scholar 

  5. Andersen SL, Arvanitogiannis A, Pliakas AM, et al (2002) Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci 5:13–14

    Article  CAS  PubMed  Google Scholar 

  6. Andersen SL, Dumont NL, Teicher MH (1997) Developmental differences in dopamine synthesis inhibition by (±)-7-OH-DPAT. Naunyn-Schmiedeberg’s Arch Pharmacol 356:173–181

    Article  CAS  Google Scholar 

  7. Andersen SL, LeBlanc CJ, Lyss PJ (2001) Maturational increases in c-fos expression in the ascending dopamine systems. Synapse 41:345–350

    Article  CAS  PubMed  Google Scholar 

  8. Arana FS, Parkinson JA, Hinton E, et al (2003) Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. J Neurosci 23:9632–9638

    CAS  PubMed  Google Scholar 

  9. Arnett JJ (1992) Reckless behavior in adolescence: a developmental perspective. Dev Rev 12:339–373

    Article  Google Scholar 

  10. Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3:563–573

    Article  CAS  PubMed  Google Scholar 

  11. Bechara A (2004) The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain Cogn 55:30–40

    Article  PubMed  Google Scholar 

  12. Bechara A, Damasio H, Damasio AR (2003) Role of the amygdala in decision-making. Ann NY Acad Sci 985:356–369

    PubMed  Google Scholar 

  13. Bechara A, Damasio H, Damasio AR, Lee GP (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci 19:5473–5481

    CAS  PubMed  Google Scholar 

  14. Beck AT (1967) Depression: Clinical, experimental and theoretical aspects. New York, Harper, Row

    Google Scholar 

  15. Bjork JM, Knutson B, Fong GW, et al (2004) Incentive-elicited brain activation in adolescents: similarities and differences from young adults. J Neurosci 24:1793–1802

    Article  CAS  PubMed  Google Scholar 

  16. Blair RJ (2001) Neurocognitive models of aggression, the antisocial personality disorders and psychopathy J Neurol Neurosurg Psychiatry 71:727–731

    Article  CAS  PubMed  Google Scholar 

  17. Blair RJR (2004) The neurobiology of antisocial behavior and psychopathy. In: Easton A, Emery NJ (eds), Cognitive neuroscience of social behaviour (pp 291–324. New York, Psychology Press

    Google Scholar 

  18. Bouhuys AL, Geerts E, Gordijn MC (1999) Depressed patients’ perceptions of facial emotions in depressed and remitted states are associated with relapse: a longitudinal study. J Nerv Ment Dis 187:595–602

    Article  CAS  PubMed  Google Scholar 

  19. Breiter HC, Aharon I, Kahneman D, et al (2001) Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30:619–639

    Article  CAS  PubMed  Google Scholar 

  20. Bunge SA, Kahn I, Wallis JD, et al (2003) Neural circuits subserving the retrieval and maintenance of abstract rules. J Neurophysiol 90:3419–3428

    Article  PubMed  Google Scholar 

  21. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    Article  PubMed  Google Scholar 

  22. Bush G, Vogt BA, Holmes J, et al (2002) Dorsal anterior cingulate cortex: a role in reward-based decision-making. Proc Natl Acad Sci USA 99:523–528

    Article  CAS  PubMed  Google Scholar 

  23. Cameron JL (2004) Interrelationships between hormones, behavior and affect during adolescence: complex relationships exist between reproductive hormones, stress-related hormones, and the activity of neural systems that regulate behavioral affect. Comments on part III. Ann NY Acad Sci 1021:134–142

    Article  Google Scholar 

  24. Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002a). Emotion and motivation: the role of the amygdala, ventral striatum and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  25. Cardinal RN, Parkinson JA, Lachenal G, et al. (2002b). Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav Neurosci 116: 553–567

    Article  PubMed  Google Scholar 

  26. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    Article  CAS  PubMed  Google Scholar 

  27. Carter CS, Braver TS, Barch DM, et al (1998) Anterior cingulate cortex, error detection and the online monitoring of performance. Science 280:747–749

    Article  CAS  PubMed  Google Scholar 

  28. Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54:241–257

    Article  CAS  PubMed  Google Scholar 

  29. Chambers RA, Taylor JR, Potenza MN (2003) Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry 160:1041–1052

    Article  PubMed  Google Scholar 

  30. Corr PJ (2004) Reinforcement sensitivity theory and personality. Neurosci Biobehav Rev 28:317–332

    Article  PubMed  Google Scholar 

  31. Costantini AF, Hoving KL (1973) The relationship of cognitive and motor response inhibition to age and IQ. J Genet Psychol 123:309–319

    CAS  PubMed  Google Scholar 

  32. Costello EJ, Pine DS, Hammen C, et al (2002) Development and natural history of mood disorders. Biol Psychiatry 52:529–542

    Article  PubMed  Google Scholar 

  33. Cunningham MG, Bhattacharyya S, Bene FM (2002) Amygdalocortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J Comp Neurol 453:116–130

    Article  PubMed  Google Scholar 

  34. Dahl RE (2004) Adolescent brain development: a period of vulnerabilities and opportunities. Keynote address. Ann NY Acad Sci 1021:1–22

    Article  Google Scholar 

  35. Dalgleish T, Taghavi R, Neshat-Doost H, et al (2003) Patterns of processing bias for emotional information across clinical disorders: a comparison of attention, memory, and prospective cognition in children and adolescents with depression, generalized anxiety, and posttraumatic stress disorder. J Clin Child Adolesc Psychol 32:10–21

    PubMed  Google Scholar 

  36. Damasio AR (1996) The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1413–1420

    Article  CAS  PubMed  Google Scholar 

  37. Damasio AR (1998) Emotion in the perspective of an integrated nervous system. Brain Res Brain Res Rev 26:83–86

    Article  CAS  PubMed  Google Scholar 

  38. Davidson RJ (1998) Affective styles and affective disorders: perspectives from affective neuroscience. Cogn Emot 307–330

  39. Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80

    Article  PubMed  Google Scholar 

  40. Davidson RJ, Lewis DA, Alloy LB, et al (2002) Neural and behavioral substrates of mood and mood regulation. Biol Psychiatry 52:478–502

    Article  PubMed  Google Scholar 

  41. Davies PL, Segalowitz SJ, Gavin WJ (2004) Development of error-monitoring event-related potentials in adolescents. Ann NY Acad Sci 1021:324–328

    Article  PubMed  Google Scholar 

  42. Deco G, Rolls ET (2005) Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cereb Cortex 15:15–30

    Article  PubMed  Google Scholar 

  43. Dehaene S, Spelke E, Pinel P, et al (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284:970–974

    Article  CAS  PubMed  Google Scholar 

  44. Delgado MR, Nystrom LE, Fissell C, et al (2000) Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 84:3072–3077

    CAS  PubMed  Google Scholar 

  45. Derryberry D, Reed MA (2002) Anxiety-related attentional biases and their regulation by attentional control. J Abnorm Psychol 111:225–236

    Article  PubMed  Google Scholar 

  46. Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  47. Dolan RJ (2000) Functional neuroimaging of the human amygdala during emotional processing and learning. In: The amygdala: a functional analysis (Second Edition ed, pp 631–653). Oxford University Press

  48. Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Ann NY Acad Sci 985:420–444

    PubMed  Google Scholar 

  49. Ehrenreich JT, Gross AM (2002) Biased attentional behavior in childhood anxiety. A review of theory and current empirical investigation. Clin. Psychol Rev 22:991–1008

    Article  PubMed  Google Scholar 

  50. Erikson EH (1950) Childhood and Society. New York, Norton

    Google Scholar 

  51. Erikson EH (1968) Identity, Youth and Crisis. New York, Norton

    Google Scholar 

  52. Ernst M, Dickstein DP, Munson S, et al (2004) Reward-related processes in pediatric bipolar disorder: a pilot study. J Affect Disord 82(Suppl 1):S89–S101

    Article  PubMed  Google Scholar 

  53. Ernst M, Jazbec S, McClure EB, et al (2005) Amygdala and nucleus accumbens activation in response to receipt and omission of gains in adults and adolescents. Neuroimage 25(4):1279–1291

    Article  PubMed  Google Scholar 

  54. Ernst M, Kimes AS, London ED, et al (2003) Neural substrates of decision-making in adults with attention deficit hyperactivity disorder. Am J Psychiatry 160:1061–1070

    Article  PubMed  Google Scholar 

  55. Ernst M, Paulus MP (2005) Neurobiology of decision-making: a selective review from a neurocognitive and clinical perspective. Biol Psychiatry 58(8):597–604

    Article  PubMed  Google Scholar 

  56. Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW (2003) Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann NY Acad Sci 985:233–250

    PubMed  Google Scholar 

  57. Fuster JM (1993) Frontal lobes. Curr Opin Neurobiol 3:160–165

    Article  CAS  PubMed  Google Scholar 

  58. Fuster JM (2001) The prefrontal cortex - an update: time is of the essence. Neuron 30:319–333

    Article  CAS  PubMed  Google Scholar 

  59. Gabriel M, Burhans L, Kashef A (2003) Consideration of a unified model of amygdalar associative functions. Ann NY Acad Sci 985:206–217

    Article  PubMed  Google Scholar 

  60. Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann NY Acad Sci 1021:77–85

    Article  PubMed  Google Scholar 

  61. Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 351:1445–1453

    Article  CAS  PubMed  Google Scholar 

  62. Gotlib IH, Kasch KL, Traill S, et al (2004) Coherence and specificity of information-processing biases in depression and social phobia. J Abnorm Psychol 113:386–398

    Article  PubMed  Google Scholar 

  63. Gottfried JA, O’Doherty J, Dolan RJ (2002) Appetitive and aversive olfactory learning in humans studied using eventrelated functional magnetic resonance imaging. J Neurosci 22:10829–10837

    CAS  PubMed  Google Scholar 

  64. Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–1107

    Article  CAS  PubMed  Google Scholar 

  65. Gray JA (1970) The psychophysiological basis of introversion-extraversion. Behav Res Ther 8:249–266

    Article  CAS  PubMed  Google Scholar 

  66. Gray JA (1972) The psychophysiological nature of introversion-extraversion: a modification of Eysenck’s theory. New York, Academic Press

    Google Scholar 

  67. Gur RC, Erwin RJ, Gur RE, et al (1992) Facial emotion discrimination: II. Behavioral findings in depression. Psychiatry Res 42:241–251

    Article  CAS  PubMed  Google Scholar 

  68. Hall GS (1904) Adolescence: its psychology and its relations to physiology, anthropology, sociology, sex, crime, religion and education. New York, Appleton

    Google Scholar 

  69. Hasler G, Drevets WC, Manji HK, Charney DS (2004) Discovering endophenotypes for major depression. Neuropsychopharmacology 29:1765–1781

    Article  CAS  PubMed  Google Scholar 

  70. Holland PC, Gallagher M (1999) Amygdala circuitry in attentional and representational processes. Trends Cogn Sci 3:65–73

    Article  PubMed  Google Scholar 

  71. Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96:651–656

    Article  CAS  PubMed  Google Scholar 

  72. Jackson ME, Moghaddam B (2001) Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. J Neurosci 21:676–681

    CAS  PubMed  Google Scholar 

  73. Joseph MH, Datla K, Young AM (2003) The interpretation of the measurement of nucleus accumbens dopamine by in vivo dialysis: the kick, the craving or the cognition? Neurosci Biobehav Rev 27:527–541

    Article  CAS  PubMed  Google Scholar 

  74. Kandel DB, Yamaguchi K, Chen K (1992) Stages of progression in drug involvement from adolescence to adulthood: further evidence for the gateway theory. J Stud Alcohol 53:447–457

    CAS  PubMed  Google Scholar 

  75. Knutson B, Adams CM, Fong GW, Hommer D (2001a) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159

    CAS  PubMed  Google Scholar 

  76. Knutson B, Fong GW, Adams CM, et al. 2001b. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12:3683–3687

    Article  CAS  PubMed  Google Scholar 

  77. Knutson B, Fong GW, Bennett SM, et al (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterisation with rapid event-related fMRI. J Comp Physiol Psychol 47:419–427

    Google Scholar 

  78. Krawczyk DC (2002) Contributions of the prefrontal cortex to the neural basis of human decision-making. Neurosci Biobehav Rev 26:631–664

    Article  PubMed  Google Scholar 

  79. Ladouceur CD, Dahl RE, Carter CS (2004) ERP correlates of action monitoring in adolescence. Ann NY Acad Sci 1021:329–336

    Article  PubMed  Google Scholar 

  80. Laviola G, Macri S, Morley-Fletcher S, Adriani W (2003) Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neurosci Biobehav Rev 27:19–31

    Article  PubMed  Google Scholar 

  81. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  82. Leon-Carrion J, Garcia-Orza J, Perez-Santamaria FJ (2004) Development of the inhibitory component of the executive functions in children and adolescents. Int J Neurosci 114:1291–1311

    Article  PubMed  Google Scholar 

  83. Lerner JS, Keltner D (2000) Beyond valence: toward a model of emotion-specific influences on judgment and choice. Cogn Emot 14:473–493

    Article  Google Scholar 

  84. Lewis DA (1997) Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 16:385–398

    Article  CAS  PubMed  Google Scholar 

  85. Lewis DA, Cruz D, Eggan S, Erickson S (2004) Postnatal development of prefrontal inhibitory circuits and the pathophysiology of cognitive dysfunction in schizophrenia. Ann. NY Acad Sci 1021:64–76

    Article  PubMed  Google Scholar 

  86. Luna B, Sweeney JA (2001) Studies of brain and cognitive maturation through childhood and adolescence: a strategy for testing neurodevelopmental hypotheses. Schizophr Bull 27:443–455

    CAS  PubMed  Google Scholar 

  87. Luna B, Sweeney JA (2004) The emergence of collaborative brain function: FMRI studies of the development of response inhibition. Ann NY Acad Sci 1021:296–309

    Article  PubMed  Google Scholar 

  88. Maggs JL, Almeida DM, Galambos NL (1995) Risky Business: the paradoxical meaning of problem behavior for young adolescents. J Early Adolesc 15:344–362

    Article  Google Scholar 

  89. Martin-Soelch C, Missimer J, Leenders KL, Schultz W (2003) Neural activity related to the processing of increasing monetary reward in smokers and non-smokers. Eur J Neurosci 18:680–698

    Article  CAS  PubMed  Google Scholar 

  90. May JC, Delgado MR, Dahl RE, et al (2004) Event-related functional magnetic resonance imaging of reward-related brain circuitry in children and adolescents. Biol Psychiatry 55:359–366

    Article  PubMed  Google Scholar 

  91. McCoy AN, Platt ML (2005) Expectations and outcomes: decision-making in the primate brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:201–211

    Article  PubMed  Google Scholar 

  92. McDonald AJ (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:1–14

    Article  CAS  PubMed  Google Scholar 

  93. McNaughton N, Corr PJ (2004) A two-dimensional neuropsychology of defence: fear/anxiety and defensive distance. Neurosci Biobehav Rev 28:285–305

    Article  PubMed  Google Scholar 

  94. Miller EK (1999) The prefrontal cortex: complex neural properties for complex behavior. Neuron 22:15–17

    Article  CAS  PubMed  Google Scholar 

  95. Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65

    Article  CAS  PubMed  Google Scholar 

  96. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  CAS  PubMed  Google Scholar 

  97. Mogg K, Bradley BP (1998) A cognitive-motivational analysis of anxiety. Behav Res Ther 36:809–848

    Article  CAS  PubMed  Google Scholar 

  98. Mogg K, Millar N, Bradley BP (2000) Biases in eye movements to threatening facial expressions in generalized anxiety disorder and depressive disorder. J Abnorm Psychol 109:695–704

    Article  CAS  PubMed  Google Scholar 

  99. Monk CS, Nelson EE, Woldehawariat G, et al (2004) Experience-dependent plasticity for attention to threat: behavioral and neurophysiological evidence in humans. Biol Psychiatry 56:607–610

    Article  PubMed  Google Scholar 

  100. Monk CS, Pine DS (2004) Childhood anxiety disorders:Acognitive neurobiological perspective. In: Charney DS, Nestler E (eds), Neurobiology of mental illness (Oxford, Oxford University Press

    Google Scholar 

  101. Morgane PJ, Galler JR, Mokler DJ (2005) A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 75:143–160

    Article  PubMed  Google Scholar 

  102. Morris JS, Friston KJ, Buchel C, et al (1998) A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121(Pt 1):47–57

    Article  PubMed  Google Scholar 

  103. Nelson JC, Charney DS (1981) The symptoms of major depressive illness. Am J Psychiatry 138:1–13

    CAS  PubMed  Google Scholar 

  104. Nieder A (2005) Counting on neurons: the neurobiology of numerical competence. Nat Rev Neurosci 6:177–190

    Article  CAS  PubMed  Google Scholar 

  105. Nolen-Hoeksema S (2000) The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. J Abnorm Psychol 109:504–511

    Article  CAS  PubMed  Google Scholar 

  106. Northoff G, Bermpohl F (2004) Cortical midline structures and the self. Trends Cogn Sci 8:102–107

    Article  PubMed  Google Scholar 

  107. O’Dell LE, Bruijnzeel AW, Ghozland S, et al (2004) Nicotine withdrawal in adolescent and adult rats. Ann NY Acad Sci 1021:167–174

    Article  PubMed  CAS  Google Scholar 

  108. O’Doherty J, Critchley H, Deichmann R, Dolan RJ (2003) Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci 23:7931–7939

    PubMed  Google Scholar 

  109. O’Doherty J, Dayan P, Schultz J, et al (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

    Article  PubMed  CAS  Google Scholar 

  110. Paulus MP, Feinstein JS, Leland D, Simmons AN (2005) Superior temporal gyrus and insula provide response and outcome-dependent information during assessment and action selection in a decision-making situation. Neuroimage 25:607–615

    Article  PubMed  Google Scholar 

  111. Paulus MP, Rogalsky C, Simmons A, et al (2003) Increased activation in the right insula during risk-taking decision-making is related to harmavoidance and neuroticism. Neuroimage 19:1439–1448

    Article  PubMed  Google Scholar 

  112. Pessoa L, Ungerleider LG (2004) Neuroimaging studies of attention and the processing of emotion-laden stimuli. Prog Brain Res 144:171–182

    Article  PubMed  Google Scholar 

  113. Phillips AG, Ahn S, Howland JG (2003) Amygdalar control of the mesocorticolimbic dopamine system: parallel pathways to motivated behavior. Neurosci Biobehav Rev 27:543–554

    Article  CAS  PubMed  Google Scholar 

  114. Pickering A.D, Gray JA (2001) The Neuroscience of personality. In: Pervin LA, John OP (eds), Handbook of personality: theory and research (pp 277–299). Guilford Press

  115. Pine DS, Lissek S, Klein RG, et al (2004) Face-memory and emotion: associations with major depression in children and adolescents. J Child Psychol Psychiatry 45:1199–1208

    Article  PubMed  Google Scholar 

  116. Pine DS, Mogg K, Bradley BP, et al (2005) Attention bias to threat in maltreated children: implications for vulnerability to stress-related psychopathology. Am J Psychiatr 162:291–296

    Article  PubMed  Google Scholar 

  117. Posner MI, DiGirolamo GJ (2000) Cognitive neuroscience: origins and promise. Psychol Bull 126:873–889

    Article  CAS  PubMed  Google Scholar 

  118. Rauch S, Shin LM, Wright CI (2003) Neuroimaging studies of amygdala function in anxiety disorders. Ann NY Acad Sci 985:389–410

    Article  PubMed  Google Scholar 

  119. Reuter J, Raedler T, Rose M, et al (2005) Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 8(2):147–148

    Article  CAS  PubMed  Google Scholar 

  120. Rolls ET (2004) Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. Anat Rec 281A:1212–1225

    Article  Google Scholar 

  121. Romeo RD (2003) Puberty: a period of both organizational and activational effects of steroid hormones on neurobehavioral development. J Neuroendocrinol 15:1185–1192

    Article  CAS  PubMed  Google Scholar 

  122. Romo R, Hernandez A, Salinas E, et al (2002) From sensation to action. Behav Brain Res 135:105–118

    Article  PubMed  Google Scholar 

  123. Romo R, Salinas E (2001) Touch and go: decision-making mechanisms in somatosensation. Annu Rev Neurosci 24:107–137

    Article  CAS  PubMed  Google Scholar 

  124. Rosso IM, Cintron CM, Steingard RJ, et al (2005) Amygdala and hippocampus volumes in pediatric major depression. Biol Psychiatry 57:21–26

    Article  PubMed  Google Scholar 

  125. Ruchsow M, Herrnberger B, Wiesend, et al (2004) The effect of erroneous responses on response monitoring in patients with major depressive disorder: a study with event-related potentials. Psychophysiology 41:833–840

    Article  PubMed  Google Scholar 

  126. Salamone JD (1994) The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 61:117–133

    Article  CAS  PubMed  Google Scholar 

  127. Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    Article  CAS  PubMed  Google Scholar 

  128. Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41

    Article  CAS  PubMed  Google Scholar 

  129. Schoenbaum G, Setlo B (2003) Lesions of nucleus accumbens disrupt learning about aversive outcomes. J Neurosci 23:9833–9841

    CAS  PubMed  Google Scholar 

  130. Schramm-Sapyta NL, Pratt AR, Winder DG (2004) Effects of peri-adolescent versus adult cocaine exposure on cocaine conditioned place preference and motor sensitization in mice. Psychopharmacology (Berl) 173:41–48

    Article  CAS  Google Scholar 

  131. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  CAS  PubMed  Google Scholar 

  132. Schultz W (2004) Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Curr Opin Neurobiol 14:139–147

    Article  CAS  PubMed  Google Scholar 

  133. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  CAS  PubMed  Google Scholar 

  134. Simon H, Taghzouti K, Gozlan H, et al (1988) Lesion of dopaminergic terminals in the amygdala produces enhanced locomotor response to D-amphetamine and opposite changes in dopaminergic activity in prefrontal cortex and nucleus accumbens. Brain Res 447:335–340

    Article  CAS  PubMed  Google Scholar 

  135. Sisk CL, Foster DL (2004) The neural basis of puberty and adolescence. Nat Neurosci 7:1040–1047

    Article  CAS  PubMed  Google Scholar 

  136. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  CAS  PubMed  Google Scholar 

  137. Spear LP (2004) Adolescent brain development and animal models. Ann NY Acad Sci 1021:23–26

    Article  PubMed  Google Scholar 

  138. Steinberg L (2004) Risk-taking in adolescence: what changes and why? Ann NY Acad Sci 1021:51–58

    Article  PubMed  Google Scholar 

  139. Taghavi MR, Neshat-Doost HT, Moradi AR, et al (1999) Biases in visual attention in children and adolescents with clinical anxiety and mixed anxiety-depression. J Abnorm Child Psychol 27:215–223

    Article  CAS  PubMed  Google Scholar 

  140. Thomas KM, Drevets WC, Dahl RE, et al (2001a) Amygdala response to fearful faces in anxious and depressed children. Arch Gen Psychiatry 58:1057–1063

    Article  CAS  PubMed  Google Scholar 

  141. Thomas KM, Drevets WC, Whalen PJ, et al (2001b) Amygdala response to facial expressions in children and adults. Biol Psychiatry 49:309–316

    Article  CAS  PubMed  Google Scholar 

  142. Tice DM, Bratslavsky E, Baumeister RF (2001) Emotional distress regulation takes precedence over impulse control: if you feel bad, do it! J Pers Soc Psychol 80:53–67

    Article  CAS  PubMed  Google Scholar 

  143. Tucker DM, Luu P, Frishkoff G, et al (2003) Frontolimbic response to negative feedback in clinical depression. J Abnorm Psychol 112:667–678

    Article  PubMed  Google Scholar 

  144. Vasey MW, Daleiden EL, Williams LL, Brown LM (1995) Biased attention in childhood anxiety disorders: a preliminary study. J Abnorm Child Psychol 23:267–279

    Article  CAS  PubMed  Google Scholar 

  145. Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:43–48

    Article  CAS  PubMed  Google Scholar 

  146. Whalen PJ, Rauch SL, Etcoff NL, et al (1998) Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 18:411–418

    CAS  PubMed  Google Scholar 

  147. Whalen PJ, Shin LM, Somerville LH, et al (2002) Functional neuroimaging studies of the amygdala in depression. Semin Clin Neuropsychiatry 7:234–242

    Article  PubMed  Google Scholar 

  148. Wills TA, Vaccaro D, McNamara G (1994) Novelty seeking, risk-taking, and related constructs as predictors of adolescent substance use: an application of Cloninger’s theory. J Subst Abuse 6:1–20

    Article  CAS  PubMed  Google Scholar 

  149. Wise RA, Bauco P, Carlezon WA Jr, Trojniar W (1992) Selfstimulation and drug reward mechanisms. Ann NY Acad Sci 654:192–198

    Article  CAS  PubMed  Google Scholar 

  150. Yim CY, Mogenson GJ (1989) Low doses of accumbens dopamine modulate amygdala suppression of spontaneous exploratory activity in rats. Brain Res 477:202–210

    Article  CAS  PubMed  Google Scholar 

  151. Zald DH (2003) The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Brain Res Rev 41:88–123

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ernst.

Additional information

Traduit de l’américain par L. Nicoulaud, service de psychiatrie de l’enfant et de l’adolescent, Pr D. Cohen, La Pitié-Salpêtrière, Paris, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, M., Pine, D.S. & Hardin, M. Le modèle triadique des aspects neurobiologiques des comportements motivés à l’adolescence. Psychiatr Sci Hum Neurosci 7, 127–139 (2009). https://doi.org/10.1007/s11836-009-0094-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11836-009-0094-2

Mots clés

Keywords

Navigation