Skip to main content

Advertisement

Log in

A Bibliometric Analysis on Optimization Solution Methods Applied to Supply Chain of Solar Energy

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This study shows a review and brief analysis of the most concepts and models in the supply chain of solar energy. The presented work of this study possesses two parts. In the first section, a brief introduction on supply chain of solar energy is addressed and then, in the second part, a detailed bibliometric analysis is performed on supply chain of solar energy. The bibliometric analysis has been performed as an influential tool for using in scientometrics and reviews, which for this aim, keywords and subject areas are discussed, and a review of problems and solution methods are provided as well. The results show that in terms of the subject area, energy fuels, green sustainable science technology, environmental sciences, environmental engineering, and chemical engineering are the most discussed areas amongst scholars. Also, based on findings, the majority of studies are deterministic approaches, while there is an urgent need to provide robust approaches for tackling uncertain situations. In the end, the conclusion and discussion are provided as the final section of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Christopher M (2017) Logistics & supply chain management

  2. Mentzer JT, DeWitt W, Keebler JS et al (2001) Defining supply chain management. J Bus Logist 22:1–25

    Article  Google Scholar 

  3. Chopra S, Meindl P (2007) Supply chain management. Strategy, planning & operation. Das summa summarum des management. Springer, pp 265–275

  4. Lambert DM, Cooper MC (2000) Issues in supply chain management. Ind Mark Manag 29:65–83

    Article  Google Scholar 

  5. Christopher M (2016) Logistics & supply chain management. Pearson UK

  6. Cooper MC, Ellram LM (1993) Characteristics of supply chain management and the implications for purchasing and logistics strategy. Int J Logist Manag

  7. Zarandi MHF, Turksen IB, Saghiri S (2002) Supply chain: crisp and fuzzy aspects. Int J Appl Math Comput Sci 12:423–435

    Google Scholar 

  8. Farahani RZ, Hekmatfar M (2009) Facility location: concepts, models, algorithms and case studies. Springer

  9. Rahimi I, Behmanesh R, Rosnah Mohd Yusuff (2013) A hybrid method for prediction and assessment efficiency of decision making units: real case study: Iranian poultry farms. Int J Decis Support Syst Technol (IJDSST) 5(1):66–83

    Article  Google Scholar 

  10. Tan KC (2001) A framework of supply chain management literature. Eur J Purch Supply Manag 7:39–48

    Article  Google Scholar 

  11. Harland CM (1996) Supply chain management: relationships, chains and networks. Br J Manag 7:S63–S80

    Article  Google Scholar 

  12. Rahimi I, Hong Tang S, Ahmadi A et al (2017) Evaluating the effectiveness of integrated benders decomposition algorithm and epsilon constraint method for multi-objective facility location problem under demand uncertainty. Iran J Manag Stud 10:551–576

    Google Scholar 

  13. Abdinnour-Helm S (1999) Network design in supply chain management. Int J Agil Manag Syst

  14. Krikke HR, Kooi EJ, Schuur PC (1999) Network design in reverse logistics: a quantitative model. New trends in distribution logistics. Springer, pp 45–61

  15. Vine E (2007) The integration of energy efficiency, renewable energy, demand response and climate change. Challenges and opportunities for evaluators and planners

  16. Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: Current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764

    Article  Google Scholar 

  17. Teske S, Fattal A, Lins C et al (2017) Renewables global futures report: Great debates towards 100% renewable energy

  18. Pérez-López P, Gschwind B, Blanc P et al (2017) ENVI-PV: an interactive Web Client for multi-criteria life cycle assessment of photovoltaic systems worldwide. Prog Photovoltaics Res Appl 25:484–498. https://doi.org/10.1002/pip.2841

    Article  Google Scholar 

  19. Byrne J, Kurdgelashvili L, Mathai M et al (2010) World solar energy review: technology, markets and policies. Cent Energy Environ Policies Rep

  20. Lund PD, Lindgren J, Mikkola J, Salpakari J (2015) Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew Sustain Energy Rev 45:785–807. https://doi.org/10.1016/j.rser.2015.01.057

    Article  Google Scholar 

  21. Sawin JL, Martinot E (2013) Renewables 2013: global status report. REN21

  22. Fazelpour F, Soltani N, Rosen MA (2014) Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island. Iran Energy 73:856–865. https://doi.org/10.1016/j.energy.2014.06.097

    Article  Google Scholar 

  23. Najafi G, Ghobadian B, Mamat R et al (2015) Solar energy in Iran: current state and outlook. Renew Sustain Energy Rev 49:931–942

    Article  Google Scholar 

  24. Alamdari P, Nematollahi O, Alemrajabi AA (2013) Solar energy potentials in Iran: a review. Renew Sustain Energy Rev 21:778–788

    Article  Google Scholar 

  25. Buonomano A, Calise F, d’Accadia MD, Vicidomini M (2018) A hybrid renewable system based on wind and solar energy coupled with an electrical storage: dynamic simulation and economic assessment. Energy 155:174–189. https://doi.org/10.1016/j.energy.2018.05.006

    Article  Google Scholar 

  26. Swarnkar NM, Gidwani L, Sharma R (2016) An application of HOMER Pro in optimization of hybrid energy system for electrification of technical institute. 2016 Int Conf Energy Effic Technol Sustain ICEETS 2016 56–61. https://doi.org/10.1109/ICEETS.2016.7582899

  27. Guinot B, Champel B, Montignac F et al (2014) Techno-economic study of a PV-hydrogen-battery hybrid system for off-grid power supply: Impact of performances’ ageing on optimal system sizing and competitiveness. In: 20th World Hydrogen Energy Conference, WHEC 2014. pp 1810–1818

  28. Li Q, Loy-Benitez J, Nam K et al (2019) Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks. Energy 178:277–292. https://doi.org/10.1016/j.energy.2019.04.114

    Article  Google Scholar 

  29. Mayer MJ, Szilágyi A, Gróf G (2020) Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Appl Energy 269:115058

    Article  Google Scholar 

  30. Ghorbani B, Mahyari KB, Mehrpooya M, Hamedi M-H (2020) Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery. Renew Energy 148:1227–1243

    Article  Google Scholar 

  31. Kim M-H, Kim D, Heo J, Lee D-W (2019) Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community. Energy 187:115916

    Article  Google Scholar 

  32. Realff MJ, Ammons JC, Newton DJ (2004) Robust reverse production system design for carpet recycling. Iie Trans 36:767–776

    Article  Google Scholar 

  33. Sheu J-B, Chou Y-H, Hu C-C (2005) An integrated logistics operational model for green-supply chain management. Transp Res Part E Logist Transp Rev 41:287–313

    Article  Google Scholar 

  34. Neto JQF, Bloemhof-Ruwaard JM, van Nunen JAEE, van Heck E (2008) Designing and evaluating sustainable logistics networks. Int J Prod Econ 111:195–208

    Article  Google Scholar 

  35. Pishvaee MS, Rabbani M, Torabi SA (2011) A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl Math Model 35:637–649

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang F, Lai X, Shi N (2011) A multi-objective optimization for green supply chain network design. Decis Support Syst 51:262–269

    Article  Google Scholar 

  37. Chaabane A, Ramudhin A, Paquet M (2012) Design of sustainable supply chains under the emission trading scheme. Int J Prod Econ 135:37–49

    Article  Google Scholar 

  38. Van Eck NJ, Waltman L (2013) VOSviewer manual. Leiden: Univeristeit Leiden 1:1–53

    Google Scholar 

  39. Van Eck NJ, Waltman L (2014) CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J Informetr 8:802–823

    Article  Google Scholar 

  40. Leydesdorff L, Milojević S (2012) Scientometrics. arXiv12084566

  41. Childress D (2011) Citation tools in academic libraries: Best practices for reference and instruction. Ref User Serv Q 51:143

    Article  Google Scholar 

  42. Estabrooks CA, Derksen L, Winther C et al (2008) The intellectual structure and substance of the knowledge utilization field: a longitudinal author co-citation analysis, 1945 to 2004. Implement Sci 3:49

    Article  Google Scholar 

  43. Emrouznejad A, Marra M (2016) Big data: who, what and where? social, cognitive and journals map of big data publications with focus on optimization. Big data optimization: recent developments and challenges. Springer, pp 1–16

  44. Rahimi I, Ahmadi A, Zobaa AF et al (2017) Big data optimization in electric power systems: a review. CRC Press

  45. Gandomi AH, Emrouznejad A, Rahimi I (2020) Evolutionary Computation in scheduling: a scientometric analysis. Evol Comput Sched 1–10

  46. Azevedo SG, Santos M, Antón JR (2019) Supply chain of renewable energy: a bibliometric review approach. Biomass Bioenergy 126:70–83. https://doi.org/10.1016/j.biombioe.2019.04.022

    Article  Google Scholar 

  47. Weinberg BH (1974) Bibliographic coupling: a review. Inf Storage Retr 10:189–196

    Article  Google Scholar 

  48. de Lagarde C, Lantz F (2018) How renewable production depresses electricity prices: evidence from the German market. Energy Policy 117:263–277. https://doi.org/10.1016/j.enpol.2018.02.048

    Article  Google Scholar 

  49. Liao H, Long Y, Tang M et al (2019) Low carbon supplier selection using a hesitant fuzzy linguistic span method integrating the analytic network process1 [Tiekėjo, pasižyminčio mažus anglies dioksido kiekius išskiriančiomis technologijomis, pasirinkimas taikant intuicinį neapibrėžtąjį lingv. Transform Bus Econ 18:67–87

    Google Scholar 

  50. Zhou X, Yang J (2009) A novel solar thermal power plant with floating chimney stiffened onto a mountainside and potential of the power generation in China’s deserts. Heat Transf Eng 30:400–407. https://doi.org/10.1080/01457630802414813

    Article  Google Scholar 

  51. Fluri TP, Pretorius JP, Van Dyk C et al (2009) Cost analysis of solar chimney power plants. Sol Energy 83:246–256

    Article  Google Scholar 

  52. Korhonen J (2002) Two paths to industrial ecology: applying the product-based and geographical approaches. J Environ Plan Manag 45:39–57. https://doi.org/10.1080/09640560120100187

    Article  Google Scholar 

  53. Candia RAR, Ramos JAA, Subieta SLB et al (2019) Techno-economic assessment of high variable renewable energy penetration in the bolivian interconnected electric system. Int J Sustain Energy Plan Manag 22:17–38. https://doi.org/10.5278/ijsepm.2659

    Article  Google Scholar 

  54. de Laurentis C (2012) Renewable energy innovation and governance in wales: a regional innovation system approach. Eur Plan Stud 20:1975–1996. https://doi.org/10.1080/09654313.2012.665041

    Article  Google Scholar 

  55. Somjai S, Hannarkin P, Pokmontree A, Vipaporn T (2020) The supply chain integration, and product modularity as antecedents of the market valuation of firms in Thai solar industry. Int J Supply Chain Manag 9:62–69

    Google Scholar 

  56. Marx H, Forin S, Finkbeiner M (2020) Organizational life cycle assessment of a service providing SME for renewable energy projects (PV and wind) in the United Kingdom. Sustain 12:10. https://doi.org/10.3390/su12114475

    Article  Google Scholar 

  57. Zargar RHM, Yaghmaee Moghaddam MH (2020) Development of a Markov-chain-based solar generation model for smart microgrid energy management system. IEEE Trans Sustain Energy 11:736–745. https://doi.org/10.1109/TSTE.2019.2904436

    Article  Google Scholar 

  58. Yee Mah AX, Ho WS, Hassim MH et al (2020) Optimization of hydrogen supply chain: a case study in Malaysia. Chem Eng Trans 78:85–90. https://doi.org/10.3303/CET2078015

    Article  Google Scholar 

  59. Borgogno R, Mauran S, Stitou D, Marck G (2017) Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector. Energy Convers Manag 135:148–159. https://doi.org/10.1016/j.enconman.2016.12.064

    Article  Google Scholar 

  60. Castellanos S, Santibañez-Aguilar JE, Shapiro BB et al (2018) Sustainable silicon photovoltaics manufacturing in a global market: A techno-economic, tariff and transportation framework. Appl Energy 212:704–719. https://doi.org/10.1016/j.apenergy.2017.12.047

    Article  Google Scholar 

  61. Kharaji Manouchehrabadi M, Yaghoubi S, Tajik J (2020) Optimal scenarios for solar cell supply chain considering degradation in powerhouses. Renew Energy 145:1104–1125. https://doi.org/10.1016/j.renene.2019.06.096

    Article  Google Scholar 

  62. Yu H, Zhang Y, Zhang Q et al (2020) System constructing of supplier evaluation and selection for solar thermal application industry. Taiyangneng Xuebao/Acta Energiae Solaris Sin 41:305–309

    Google Scholar 

  63. Perkins G (2020) Perspectives and economics of combining biomass liquefaction with solar PV for energy storage and electricity production. Energy Sources Part B. https://doi.org/10.1080/15567249.2020.1749910

    Article  Google Scholar 

  64. Tsao Y-C, Vu T-L (2019) Power supply chain network design problem for smart grid considering differential pricing and buy-back policies. Energy Econ 81:493–502. https://doi.org/10.1016/j.eneco.2019.04.022

    Article  Google Scholar 

  65. Gilson B, Heylen P, Aertsens W (2011) Reducing carbon intensity of the supply chain by promoting public transport european transport sector reduces greenhouse gas emissions. EM Air Waste Manag Assoc Mag Environ Manag 16–18

  66. Pinkse J, van den Buuse D (2012) The development and commercialization of solar PV technology in the oil industry. Energy Policy 40:11–20. https://doi.org/10.1016/j.enpol.2010.09.029

    Article  Google Scholar 

  67. Zeng K (2015) Domestic politics and US-China trade disputes over renewable energy. J East Asian Stud 15:423–454. https://doi.org/10.1017/S1598240800009139

    Article  Google Scholar 

  68. Marsillac E (2012) Management of the photovoltaic supply chain. Int J Technol Policy Manag 12:195–211. https://doi.org/10.1504/IJTPM.2012.046926

    Article  Google Scholar 

  69. Beck A (2008) Simulation: the practice of model development and use

  70. Mobini M, Sowlati T, Sokhansanj S (2011) Forest biomass supply logistics for a power plant using the discrete-event simulation approach. Appl Energy 88:1241–1250

    Article  Google Scholar 

  71. Paulista CR, Peixoto TA, de Assis Rangel JJ (2019) Modeling and discrete event simulation in industrial systems considering consumption and electrical energy generation. J Clean Prod 224:864–880

    Article  Google Scholar 

  72. Lilis G, Van Cutsem O, Kayal M (2019) A High-Speed Integrated building emulation engine based on discrete event simulation. J Syst Archit 92:53–65

    Article  Google Scholar 

  73. Kroese DP, Brereton T, Taimre T, Botev ZI (2014) Why the Monte Carlo method is so important today. Wiley Interdiscip Rev Comput Stat 6:386–392

    Article  Google Scholar 

  74. Ahn H, Rim D, Pavlak GS, Freihaut JD (2019) Uncertainty analysis of energy and economic performances of hybrid solar photovoltaic and combined cooling, heating, and power (CCHP + PV) systems using a Monte-Carlo method. Appl Energy 255:113753

    Article  Google Scholar 

  75. Gu Y, Zhang X, Myhren JA et al (2018) Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method. Energy Convers Manag 165:8–24

    Article  Google Scholar 

  76. da Silva Pereira EJ, Pinho JT, Galhardo MAB, Macêdo WN (2014) Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy. Renew Energy 69:347–355

    Article  Google Scholar 

  77. Carrascosa M, Unamuno S, Agullo-Lopez F (1983) Monte Carlo simulation of the performance of PMMA luminescent solar collectors. Appl Opt 22:3236–3241

    Article  Google Scholar 

  78. Monforti F, Huld T, Bódis K et al (2014) Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew Energy 63:576–586

    Article  Google Scholar 

  79. Guerra G, Martinez JA (2014) A Monte Carlo method for optimum placement of photovoltaic generation using a multicore computing environment. In: 2014 IEEE PES General Meeting| Conference & Exposition. pp 1–5

  80. Desaulniers G, Desrosiers J, Solomon MM (2006) Column generation. Springer, Berlin

    MATH  Google Scholar 

  81. Saldarriaga-Cortés C, Salazar H, Moreno R, Jiménez-Estévez G (2019) Stochastic planning of electricity and gas networks: an asynchronous column generation approach. Appl Energy 233:1065–1077

    Article  Google Scholar 

  82. Harb H, Monti A, Müller D (2017) Predictive demand side management strategies for residential building energy systems. E. ON Energy Research Center

  83. Anjos MF, Lodi A, Tanneau M (2018) A decentralized framework for the optimal coordination of distributed energy resources. IEEE Trans Power Syst 34:349–359

    Article  Google Scholar 

  84. Bellman R (1966) Dynamic programming. Sci (80-) 153:34–37

    Article  MATH  Google Scholar 

  85. Bertsekas DP, Tsitsiklis JN (1995) Neuro-dynamic programming: an overview. In: Proceedings of 1995 34th IEEE conference on decision and control, pp 560–564

  86. Liu D, Xu Y, Wei Q, Liu X (2017) Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA J Autom Sin 5:36–46

    Article  Google Scholar 

  87. Marano V, Rizzo G, Tiano FA (2012) Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage. Appl Energy 97:849–859

    Article  Google Scholar 

  88. Ngoc TN, Phung QN, Tung LN et al (2017) Increasing efficiency of photovoltaic systems under non-homogeneous solar irradiation using improved dynamic programming methods. Sol Energy 150:325–334

    Article  Google Scholar 

  89. Wei Q, Shi G, Song R, Liu Y (2017) Adaptive dynamic programming-based optimal control scheme for energy storage systems with solar renewable energy. IEEE Trans Ind Electron 64:5468–5478

    Article  Google Scholar 

  90. Sanseverino ER, Ngoc TN, Cardinale M et al (2015) Dynamic programming and Munkres algorithm for optimal photovoltaic arrays reconfiguration. Sol Energy 122:347–358

    Article  Google Scholar 

  91. Hafiz F, Lubkeman D, Husain I, Fajri P, Conference, Exposition (2018) (T&D), pp 1–9

  92. Boaro M, Fuselli D, De Angelis F et al (2013) Adaptive dynamic programming algorithm for renewable energy scheduling and battery management. Cognit Comput 5:264–277

    Article  Google Scholar 

  93. Berrueta A, Heck M, Jantsch M et al (2018) Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants. Appl Energy 228:1–11

    Article  Google Scholar 

  94. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity. Courier Corporation

  95. Raman R, Grossmann IE (1994) Modelling and computational techniques for logic based integer programming. Comput Chem Eng 18:563–578

    Article  Google Scholar 

  96. Chatterji E, Bazilian MD (2020) Smart meter data to optimize combined roof-top solar and battery systems using a stochastic mixed integer programming model. IEEE Access 8:133843–133853

    Article  Google Scholar 

  97. Waiwong S, Damrongkulkamjorn P (2016) Optimal sizing for stand alone power generating system with wind-PV-hydro storage by mixed-integer linear programming. In: 2016 IEEE international conference on renewable energy research and applications (ICRERA), pp 437–441

  98. Land AH, Doig AG (2010) An automatic method for solving discrete programming problems. 50 Years of Integer Programming 1958–2008. Springer, pp 105–132

  99. Clausen J (1999) Branch and bound algorithms-principles and examples. Dep Comput Sci Univ Copenhagen1–30

  100. Chenouard R, El-Sehiemy RA (2020) An interval branch and bound global optimization algorithm for parameter estimation of three photovoltaic models. Energy Convers Manag 205:112400

    Article  Google Scholar 

  101. Olalla C, Clement D, Choi BS, Maksimović D (2013) A branch and bound algorithm for high-granularity PV simulations with power limited SubMICs. In: 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL). pp 1–6

  102. An LN, Dung TTM, Quoc-Tuan T (2018) Optimal energy management for an on-grid microgrid by using Branch and Bound method. In: 2018 IEEE international conference on environment and electrical engineering and 2018 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe), pp 1–5

  103. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8:239–287

    Article  MathSciNet  MATH  Google Scholar 

  104. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press

  105. Asgher U, Babar Rasheed M, Al-Sumaiti AS et al (2018) Smart energy optimization using heuristic algorithm in smart grid with integration of solar energy sources. Energies 11:3494

    Article  Google Scholar 

  106. Oliva D, Abd Elaziz M, Elsheikh AH, Ewees AA (2019) A review on meta-heuristics methods for estimating parameters of solar cells. J Power Sources 435:126683

    Article  Google Scholar 

  107. Maleki A, Pourfayaz F, Ahmadi MH (2016) Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach. Sol Energy 139:666–675

    Article  Google Scholar 

  108. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning

  109. Holland JH (1992) Genetic algorithms. Sci Am 267:66–73

    Article  Google Scholar 

  110. Sastry K, Goldberg D, Kendall G (2005) Genetic algorithms. Search methodologies. Springer, pp 97–125

  111. Yang H, Zhou W, Lu L, Fang Z (2008) Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm. Sol energy 82:354–367

    Article  Google Scholar 

  112. Merei G, Berger C, Sauer DU (2013) Optimization of an off-grid hybrid PV–Wind–Diesel system with different battery technologies using genetic algorithm. Sol Energy 97:460–473

    Article  Google Scholar 

  113. Deshkar SN, Dhale SB, Mukherjee JS et al (2015) Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm. Renew Sustain Energy Rev 43:102–110

    Article  Google Scholar 

  114. Kulaks\iz AA, Akkaya R (2012) A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive. Sol Energy 86:2366–2375

    Article  Google Scholar 

  115. Ismail MS, Moghavvemi M, Mahlia TMI (2014) Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems. Energy Convers Manag 85:120–130

    Article  Google Scholar 

  116. Khatib T, Mohamed A, Sopian K (2012) Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: case study of Kuala Terengganu, Malaysia. Energy Build 47:321–331

    Article  Google Scholar 

  117. Nafeh AE-SA (2011) Optimal economical sizing of a PV-wind hybrid energy system using genetic algorithm. Int J Green Energy 8:25–43

    Article  Google Scholar 

  118. Wang M, Wang J, Zhao P, Dai Y (2015) Multi-objective optimization of a combined cooling, heating and power system driven by solar energy. Energy Convers Manag 89:289–297

    Article  Google Scholar 

  119. Alirahmi SM, Dabbagh SR, Ahmadi P, Wongwises S (2020) Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy. Energy Convers Manag 205:112426

    Article  Google Scholar 

  120. Ahmadi MH, Mehrpooya M, Abbasi S et al (2017) Thermo-economic analysis and multi-objective optimization of a transcritical CO2 power cycle driven by solar energy and LNG cold recovery. Therm Sci Eng Prog 4:185–196

    Article  Google Scholar 

  121. Galván IM, Valls JM, Cervantes A, Aler R (2017) Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks. Inf Sci (Ny) 418:363–382

    Article  Google Scholar 

  122. Ahmadi P, Dincer I, Rosen MA (2014) Multi-objective optimization of a novel solar-based multigeneration energy system. Sol Energy 108:576–591

    Article  Google Scholar 

  123. Charnes A, Cooper WW, Ferguson RO (1955) Optimal estimation of executive compensation by linear programming. Manage Sci 1:138–151

    Article  MathSciNet  MATH  Google Scholar 

  124. Ramanathan R, Ganesh LS (1995) Energy resource allocation incorporating qualitative and quantitative criteria: an integrated model using goal programming and AHP. Socioecon Plann Sci 29:197–218

    Article  Google Scholar 

  125. Daim TU, Kayakutlu G, Cowan K (2010) Developing Oregon’s renewable energy portfolio using fuzzy goal programming model. Comput Ind Eng 59:786–793

    Article  Google Scholar 

  126. ElQuliti SAH, Mohamed AW (2016) A large-scale nonlinear mixed-binary goal programming model to assess candidate locations for solar energy stations: an improved real-binary differential evolution algorithm with a case study. J Comput Theor Nanosci 13:7909–7921

    Article  Google Scholar 

  127. Zografidou E, Petridis K, Petridis NE, Arabatzis G (2017) A financial approach to renewable energy production in Greece using goal programming. Renew energy 108:37–51

    Article  MATH  Google Scholar 

  128. Hocine A, Kouaissah N, Bettahar S, Benbouziane M (2018) Optimizing renewable energy portfolios under uncertainty: a multi-segment fuzzy goal programming approach. Renew Energy 129:540–552

    Article  Google Scholar 

  129. Bakhtavar E, Prabatha T, Karunathilake H et al (2020) Assessment of renewable energy-based strategies for net-zero energy communities: A planning model using multi-objective goal programming. J Clean Prod 272:122886

    Article  Google Scholar 

  130. San Cristóbal JR (2012) A goal programming model for the optimal mix and location of renewable energy plants in the north of Spain. Renew Sustain Energy Rev 16:4461–4464

    Article  Google Scholar 

  131. Iversen EB, Morales JM, Madsen H (2014) Optimal charging of an electric vehicle using a Markov decision process. Appl Energy 123:1–12

    Article  Google Scholar 

  132. Liu Z, Zhang C, Dong M et al (2016) Markov-decision-process-assisted consumer scheduling in a networked smart grid. IEEE Access 5:2448–2458

    Article  Google Scholar 

  133. Rout RR, Krishna MS, Gupta S (2016) Markov decision process-based switching algorithm for sustainable rechargeable wireless sensor networks. IEEE Sens J 16:2788–2797

    Article  Google Scholar 

  134. Dimopoulou S, Oppermann A, Boggasch E, Rausch A (2018) A Markov decision process for managing a hybrid energy storage system. J Energy Storage 19:160–169

    Article  Google Scholar 

  135. Keerthisinghe C, Chapman AC, Verbič G (2018) PV and demand models for a Markov decision process formulation of the home energy management problem. IEEE Trans Ind Electron 66:1424–1433

    Article  Google Scholar 

  136. Wu Y, Zhang J, Ravey A et al (2020) Real-time energy management of photovoltaic-assisted electric vehicle charging station by markov decision process. J Power Sources 476:228504

    Article  Google Scholar 

  137. Rossi F, Van Beek P, Walsh T (2006) Handbook of constraint programming. Elsevier

  138. Qi F, Shahidehpour M, Li Z et al (2019) A chance-constrained decentralized operation of multi-area integrated electricity–natural gas systems with variable wind and solar energy. IEEE Trans Sustain Energy 11:2230–2240

    Article  Google Scholar 

  139. Cai YP, Huang GH, Yang ZF et al (2009) Community-scale renewable energy systems planning under uncertainty—an interval chance-constrained programming approach. Renew Sustain Energy Rev 13:721–735

    Article  Google Scholar 

  140. Kamjoo A, Maheri A, Dizqah AM, Putrus GA (2016) Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. Int J Electr Power Energy Syst 74:187–194

    Article  Google Scholar 

  141. Kang L, Sun Y, Zhou S, Xu D (2004) Study on sizing of batteries for distributed power system utilizing chance constrained programming. ICPE

  142. Ramakumar R, Shetty PS, Ashenayi K (1986) A linear programming approach to the design of integrated renewable energy systems for developing countries.IEEE Trans Energy Convers, pp 18–24

  143. Van Laarhoven PJM, Aarts EHL (1987) Simulated annealing. Simulated annealing: theory and applications. Springer, pp 7–15

  144. Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines

  145. El-Naggar KM, AlRashidi MR, AlHajri MF, Al-Othman AK (2012) Simulated annealing algorithm for photovoltaic parameters identification. Sol Energy 86:266–274

    Article  Google Scholar 

  146. Zhang G, Wu B, Maleki A, Zhang W (2018) Simulated annealing-chaotic search algorithm based optimization of reverse osmosis hybrid desalination system driven by wind and solar energies. Sol Energy 173:964–975

    Article  Google Scholar 

  147. Zhang W, Maleki A, Rosen MA, Liu J (2018) Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy 163:191–207

    Article  Google Scholar 

  148. Ekren O, Ekren BY (2010) Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Appl Energy 87:592–598

    Article  Google Scholar 

  149. Chen Y-M, Lee C-H, Wu H-C (2005) Calculation of the optimum installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method. IEEE Trans Energy Convers 20:467–473

    Article  Google Scholar 

  150. Dkhichi F, Oukarfi B, Fakkar A, Belbounaguia N (2014) Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing. Sol Energy 110:781–788

    Article  Google Scholar 

  151. Askarzadeh A (2013) A discrete chaotic harmony search-based simulated annealing algorithm for optimum design of PV/wind hybrid system. Sol Energy 97:93–101

    Article  Google Scholar 

  152. Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–206

    Article  MATH  Google Scholar 

  153. Glover F (1990) Tabu search—part II. ORSA J Comput 2:4–32

    Article  MATH  Google Scholar 

  154. Katsigiannis YA, Georgilakis PS, Karapidakis ES (2012) Hybrid simulated annealing–tabu search method for optimal sizing of autonomous power systems with renewables. IEEE Trans Sustain Energy 3:330–338

    Article  Google Scholar 

  155. Nara K, Hayashi Y, Ikeda K, Ashizawa T (2001) Application of tabu search to optimal placement of distributed generators. In: 2001 IEEE power engineering society winter meeting. Conference Proceedings (Cat. No. 01CH37194), pp 918–923

  156. Ha LD, Ploix S, Zamai E, Jacomino M (2006) Tabu search for the optimization of household energy consumption. In: 2006 IEEE International Conference on Information Reuse & Integration. pp 86–92

  157. Katsigiannis YA, Kanellos FD, Papaefthimiou S (2016) A software tool for capacity optimization of hybrid power systems including renewable energy technologies based on a hybrid genetic algorithm—tabu search optimization methodology. Energy Syst 7:33–48

    Article  Google Scholar 

  158. Waldner J-B (2013) Nanocomputers and swarm intelligence. Wiley

  159. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39

    Article  Google Scholar 

  160. El-kenawy E (2018) Solar radiation machine learning production depend on training neural networks with Ant Colony Optimization Algorithms

  161. Prasad R, Ali M, Kwan P, Khan H (2019) Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Appl Energy 236:778–792

    Article  Google Scholar 

  162. Fetanat A, Khorasaninejad E (2015) Size optimization for hybrid photovoltaic–wind energy system using ant colony optimization for continuous domains based integer programming. Appl Soft Comput 31:196–209

    Article  Google Scholar 

  163. Marzband M, Yousefnejad E, Sumper A, Dom\’\inguez-Garc\’\ia JL (2016) Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization. Int J Electr Power Energy Syst 75:265–274

    Article  Google Scholar 

  164. Belhomme B, Pitz-Paal R, Schwarzbözl P (2014) Optimization of heliostat aim point selection for central receiver systems based on the ant colony optimization metaheuristic. J Sol energy Eng 136

  165. Jiang LL, Maskell DL, Patra JC (2013) A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build 58:227–236

    Article  Google Scholar 

  166. Titri S, Larbes C, Toumi KY, Benatchba K (2017) A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions. Appl Soft Comput 58:465–479

    Article  Google Scholar 

  167. Rahmani R, Yusof R, Seyedmahmoudian M, Mekhilef S (2013) Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J Wind Eng Ind Aerodyn 123:163–170

    Article  Google Scholar 

  168. Azaza M, Wallin F (2017) Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden. Energy 123:108–118

    Article  Google Scholar 

  169. Sadeghi D, Naghshbandy AH, Bahramara S (2020) Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization. Energy 209:118471

    Article  Google Scholar 

  170. Indragandhi V, Logesh R, Subramaniyaswamy V et al (2018) Multi-objective optimization and energy management in renewable based AC/DC microgrid. Comput Electr Eng 70:179–198

    Article  Google Scholar 

  171. Konneh DA, Howlader HOR, Shigenobu R et al (2019) A multi-criteria decision maker for grid-connected hybrid renewable energy systems selection using multi-objective particle swarm optimization. Sustainability 11:1188

    Article  Google Scholar 

  172. Delgarm N, Sajadi B, Kowsary F, Delgarm S (2016) Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO). Appl Energy 170:293–303

    Article  Google Scholar 

  173. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  174. Li Y, Liao S, Liu G (2015) Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making. Int J Electr Power Energy Syst 64:167–175

    Article  Google Scholar 

  175. Arora R, Kaushik SC, Kumar R, Arora R (2016) Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making. Int J Electr Power Energy Syst 74:25–35

    Article  Google Scholar 

  176. Arora R, Kaushik SC, Kumar R (2016) Multi-objective thermodynamic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making. Appl Sol Energy 52:295–304

    Article  Google Scholar 

  177. Zhang D, Liu J, Jiao S et al (2019) Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II. Energy 189:116121

    Article  Google Scholar 

  178. Carlucci S, Cattarin G, Causone F, Pagliano L (2015) Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II). Energy Build 104:378–394

    Article  Google Scholar 

  179. Abul’Wafa AR (2013) Optimization of economic/emission load dispatch for hybrid generating systems using controlled Elitist NSGA-II. Electr Power Syst Res 105:142–151

    Article  Google Scholar 

  180. Sarker R, Ray T (2009) An improved evolutionary algorithm for solving multi-objective crop planning models. Comput Electron Agric 68:191–199

    Article  Google Scholar 

  181. Delgoshaei A, Ali A (2020) A hybrid genetic and simulated annealing algorithms for scheduling fashion goods supply chains. Int J Adv Heuristic Meta-heuristic Algorithms 1(1):30–37

    Google Scholar 

  182. Delgoshaei A, Ariffin M, Baharudin BHTB, Leman Z (2015) Minimizing makespan of a resource-constrained scheduling problem: a hybrid greedy and genetic algorithms. Int J Ind Eng Comput 6(4):503–520

    Google Scholar 

  183. Behmanesh R, Rahimi I (2012) Using combination of optimized recurrent neural network with design of experiments and regression for control chart forecasting. Bus Eng Industrial Appl Colloquium 1:1

    Google Scholar 

  184. Tsai SB, Xue Y, Zhang J, Chen Q, Liu Y, Zhou J, Dong W (2017) Models for forecasting growth trends in renewable energy. Renew Sustain Energy Rev 77:1169–1178

    Article  Google Scholar 

Download references

Funding

This project has been supported by a research grant of the University of Tabriz (number 1609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Nematian.

Ethics declarations

Conflict of interest

None.

Human Participants and/or Animals

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, I., Nematian, J. A Bibliometric Analysis on Optimization Solution Methods Applied to Supply Chain of Solar Energy. Arch Computat Methods Eng 29, 4213–4231 (2022). https://doi.org/10.1007/s11831-022-09736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09736-5

Keywords

Navigation