Skip to main content
Log in

Computational 2D and 3D Medical Image Data Compression Models

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this world of big data, the development and exploitation of medical technology is vastly increasing and especially in big biomedical imaging modalities available across medicine. At the same instant, acquisition, processing, storing and transmission of such huge medical data requires efficient and robust data compression models. Over the last 2 decades, numerous compression mechanisms, techniques and algorithms were proposed by many researchers. This work provides a detailed status of these existing computational compression methods for medical imaging data. Appropriate classification, performance metrics, practical issues and challenges in enhancing the two dimensional (2D) and three dimensional (3D) medical image compression arena are reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

AI:

Artificial intelligence

BPNN:

Back propagation neural network

BWT:

Burrows wheeler transform

CAGR:

Compound annual growth rate

CANDECOMP:

Canonical decomposition

CC:

Correlation coefficient

CCR:

Computational complexity reduction

CLEBP:

Color listless embedded block partitioning

CPTBC:

CANDECOMP/PARAFAC tensor based compression

CR:

Compression ratio

CT:

Computed tomography

DICOM:

Digital imaging and communications in medicine

DIP:

Digital image processing

DLWIC:

Distortion limited wavelet image codec

EHR:

Electronic health record

ERLE:

Enhanced run length encoding

FSTD:

Fiber sampling tensor decomposition

HOOI:

Higher order orthogonal iteration

HVS:

Human visual system

iDTT:

Integer discrete Tchebichef transform

JBIG:

Joint bi-level image expert group

MHE:

Merging based Huffman encoding

MIW:

Medical image watermarking

MLSVD:

Multilinear singular value decomposition

MRI:

Magnetic resonance imaging

Nifti:

Neuroimaging informatics technology initiative

ONC:

Office of National Coordinator for health information technology

PACS:

Picture archiving and communication system

PET:

Positron emission tomography

RG:

Region growing

RMSE:

Root mean square error

SA-DWT:

Shape-adaptive discrete wavelet transforms

SA-ROI:

Scaling based ROI

SNR:

Signal to noise ratio

SPIHT:

Set partitioning in hierarchical trees

SVD:

Singular value decomposition

TC-VQ:

Transform coding and vector quantization

UIQI:

Universal Image Quality Index

US:

Ultra sound

3D-ESCOT:

Three dimensional cube splitting embedded block coding with optimized truncation

3DHLCK:

3D hierarchical listless embedded block

ALZ:

Adaptive Lempel–Ziv

BPG:

Better portable graphics

BPP:

Bit per pixel

BTF:

Bidirectional texture functions

CALIC:

Context based arithmetic lossless imaging codec

CE:

Capsule endoscopy

CUR:

Column row decomposition

DCT:

Discrete cosine transform

DMA:

Distortion minimization algorithm

DST:

Discrete sine transform

DWT:

Discrete wavelet transform

EBCOT:

Embedded block coding with optimized truncation

EEG:

Electroencephalograms

EZW:

Embedded zerotree wavelet

HINT:

Hierarchical interpolation

HOSVD:

Higher order singular value decomposition

JPEG2000:

Joint Photographic Experts Group 2000

KLT:

Karhunen–Loeve transform

LIP:

List of insignificant pixels

LISt:

List of insignificant sets

LNS:

Logarithmic number system

LSP:

List of significant pixels

MC-EEG:

Multichannel electroencephalogram

MFT:

Move to front transform

MNF:

Maximum noise fraction

MPEG:

Motion Picture Experts Group

MRG:

Modified region growing

MRP:

Minimum rate predictors

MSE:

Mean square error

PCA:

Principal component analysis

PLTD:

Patch-based low-rank tensor decomposition

SBV:

Selective bounding volume

SC:

Structural content

SLIC:

Segmentation based lossless image coding

SPECK:

Set partitioned embedded block coder

SPHIT:

Set partitioning in hierarchical trees

SSIM:

Structural Similarity Index

VQ:

Vector quantaization

WDD:

Weighted diagnostic distortion

3D BISK:

Three dimensional binary set splitting with k-D trees

3D-DHT:

3D discrete Hartley transform

AAC:

Adaptive arithmetic coding

BPV:

Bit per voxel

BWCA:

Burrow Wheeler Compression Algorithm

CABAC:

Context adaptive binary arithmetic coding

CDF:

Cohen–Daubechies–Feauveau

CRLE:

Conventional run length encoding

DTT:

Discrete Tchebichef transform

DWT-BP:

DWT with BACK PROPAGATION

ECG:

Electrocardiogram

FSTD:

Fiber sampling tensor decomposition

GOP:

Group of pictures

HEVC:

High efficiency video coding

HSI:

Hyper spectral images

HWT:

Haar wavelet transform

IWT:

Integer wavelet transform

JBIG:

Joint Bi-level Image Expert Group

LEBP:

Listless embedded block partitioning

LT-TD:

Lapped transform Tucker decomposition

MSSIM:

Mean Structural Similarity Index

MSSIM:

Multi-Scale Structural Similarity Index

ORLE:

Optimized run length encoding

PFCM:

Possiblistic Fuzzy C-Means Clustering method

PIT:

Progressive image transmission

PNG:

Portable network graphics

PRD:

Percent rate distortion

PRD:

Percentage root-mean squared difference

PSNR:

Peak signal to noise ratio

RLC:

Run LENGTH CODER

ROI:

Region of interest

SA-ROI:

Shape adaptive region of interest

SWT:

Stationary wavelet transforms

TCS:

Tensor compressive sensing

TSUID:

Transfer Syntax Unique Identification

VOI:

Volume of interest

WDD:

Weighted Diagnostic Distortion Index

ZTE:

Zero tree entropy

References

  1. Liu F, Hernandez-Cabronero M, Sanchez V, Marcellin MW, Bilgin A (2017) The current role of image compression standards in medical imaging. Information 8(4):1–26. https://doi.org/10.3390/info8040131

    Article  Google Scholar 

  2. Shickel B, Tighe PJ, Bihorac A, Rashidi P (2018) Deep EHR: a survey of recent advances in deep learning techniques for Electronic Health Record (EHR) Analysis. IEEE J Biomed Heal Inform 22(5):1589–1604. https://doi.org/10.1109/JBHI.2017.2767063

    Article  Google Scholar 

  3. http://www.marketsandmarkets.com/Market-Reports/diagnostic-imaging-market-411.html

  4. https://www.technavio.com/report/global-medical-imaging-3d-medical-imaging-equipment-market

  5. http://www.medicalbuyer.co.in/index.php/medical-technology/patient-monitoring-equipment/198-medical-buyer/medical-technology/3980-making-in-india-a-leap-for-indian-healthcare

  6. Ballantyne L (2011) Comparing 2D and 3D imaging. J Vis Commun Med 34(3):138–141. https://doi.org/10.3109/17453054.2011.605057

    Article  Google Scholar 

  7. Riedel CH, Zoubie J, Ulmer S, Gierthmuehlen J, Jansen O (2012) Thin-slice reconstructions of nonenhanced CT images allow for detection of thrombus in acute stroke. Stroke 43(9):2319–2323. https://doi.org/10.1161/STROKEAHA.112.649921

    Article  Google Scholar 

  8. Punitha V, Kalavathi P (2020) Analysis of file formats and lossless compression techniques for medical images. Int J Sci Res Comput 2(1):1–6

  9. Boopathiraja S, Kalavathi P, Dhanalakshmi C (2019) Significance of image compression and its upshots—a survey. Int J Sci Res Comput Sci Eng Inf Technol 5(2):1203–1208. https://doi.org/10.32628/CSEIT1952321

  10. DeVore RA, Jawerth B, Lucier BJ (1992) Image compression through wavelet transform coding. IEEE Trans Inf Theory 38(2):719–746. https://doi.org/10.1109/18.119733

    Article  MathSciNet  MATH  Google Scholar 

  11. Lewis AS, Knowles G (1992) Image compression using the 2-D wavelet transform. IEEE Trans Image Process 1(2):244–250. https://doi.org/10.1109/83.136601

    Article  Google Scholar 

  12. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462. https://doi.org/10.1109/78.258085

    Article  MATH  Google Scholar 

  13. Said A, Pearlman WA (1996) A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243–250. https://doi.org/10.1109/76.499834

    Article  Google Scholar 

  14. Islam A, Pearlman WA (1998) An embedded and efficient low-complexity hierarchical image coder. Vis. Commun. Image Process. ’99 3653:294–305. https://doi.org/10.1117/12.334677

    Article  Google Scholar 

  15. Pearlman WA, Islam A, Nagaraj N, Said A (2004) Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Trans Circuits Syst Video Technol 14(11):1219–1235

    Article  Google Scholar 

  16. Ali Bilgin MWM, Zweig G (1998) Lossless medical image compression using three-dimensional integer wavelet transforms

  17. Xiong Z, Wu X, Yun DY, Pearlman WA (1998) Progressive coding of medical volumetric data using three-dimensional integer wavelet packet transform. In: IEEE 2nd workshop on multimedia signal processing, vol, pp. 553–558. https://doi.org/10.1109/MMSP.1998.739039

  18. Wang J, Huang HK (1996) Medical image compression by using three-dimensional wavelet transformation. IEEE Trans Med Imaging 15(4):547–554. https://doi.org/10.1109/42.511757

    Article  Google Scholar 

  19. Islam A, Pearlman WA (1999) An embedded and efficient low-complexity hierarchical image coder. In: Proceedings of SPIE visual communication and image processing, pp 294–305

  20. Tang X, Pearlman WA (2006) Three-dimensional wavelet-based compression of hyperspectral images. In: Hyperspectral data compression, pp 273–308. https://doi.org/10.1007/0-387-28600-4_10

  21. Bilgin A, Zweig G, Marcellin MW (2000) Three-dimensional image compression with integer wavelet transforms. Appl Opt 39(11):1799. https://doi.org/10.1364/ao.39.001799

    Article  Google Scholar 

  22. Dragotti PL, Poggi G, Ragozini ARP (2000) Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428. https://doi.org/10.1109/36.823937

    Article  Google Scholar 

  23. Taubman D (2000) High performance scalable image compression with EBCOT. IEEE Trans Image Process 9(7):1158–1170. https://doi.org/10.1109/83.847830

    Article  Google Scholar 

  24. Chang C, Chen S, Chiang J (2007) Efficient encoder design for JPEG2000 EBCOT context formation. In: Proceedings of the 15th European Signal Processing Conference (EUSIPCO ’07), 2007, no. Eusipco, pp 644–648

  25. Lian C-J, Chen K-F, Chen H-H, Chen L-G (2002) Analysis and architecture design of lifting based DWT and EBCOT for JPEG 2000. IEEE 13(3):180–183. https://doi.org/10.1109/vtsa.2001.934514

    Article  Google Scholar 

  26. Chiang J-S, Chang C-H, Lin Y-S, Hsieh C-Y, Hsia C-H (2004) High-speed EBCOT with dual context-modeling coding architecture for JPEG2000. In: Proc. IEEE Int. Symp. Circuits Syst, pp 865–868. https://doi.org/10.1109/iscas.2004.1328884

  27. JPEG2000 part-1 (2001) Information technology-JPEG 2000 image coding system-part 1: core coding system. ISO/IEC, 15444-1

  28. Schelkens P (2001) Multi-dimensional wavelet coding algorithms and implementations. Vrije Universiteit Brussel, Brussel

    Google Scholar 

  29. Xu J, Xiong Z, Li S, Zhang YQ (2001) Three-dimensional Embedded Subband Coding with Optimized Truncation (3-D ESCOT). Appl Comput Harmon Anal 10(3):290–315. https://doi.org/10.1006/acha.2000.0345

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim B, Pearlman WA (2002) An embedded wavelet video coder using three-dimensional partitioning in hierarchical (SPIHT) coder set trees. In: Syst. Eng. pp. 251–260

  31. Simard P, Steinkraus D, Malvar H (2002) On-line adaptation in image coding with a 2-D tarp filter. In: Data compression Conf. Proc., pp. 23–32. https://doi.org/10.1109/DCC.2002.999940

  32. Wang Y, Rucker JT, Fowler JE (2004) Three-dimensional tarp coding for the compression of hyperspectral images. IEEE Geosci Remote Sens Lett 1(2):136–140. https://doi.org/10.1109/LGRS.2004.824762

    Article  Google Scholar 

  33. Benoit-Cattin H, Baskurt A, Turjman F, Prost R (1997) 3D medical image coding using separable 3D wavelet decomposition and lattice vector quantizatio. Signal Process 59(2):139–153. https://doi.org/10.1016/s0165-1684(97)89501-1

    Article  MATH  Google Scholar 

  34. Xiong Z, Wu X, Cheng S, Hua J (2003) Lossy-to-lossless compression of medical volumetric data using three-dimensional integer wavelet transforms. IEEE Trans Med Imaging 22(3):459–470. https://doi.org/10.1109/TMI.2003.809585

    Article  Google Scholar 

  35. Yeom S, Stern A, Javidi B (2004) Compression of 3D color integral images. Opt Express 12(8):1632. https://doi.org/10.1364/opex.12.001632

    Article  Google Scholar 

  36. Shyam Sunder R, Eswaran C, Sriraam N (2006) Medical image compression using 3-D Hartley transform. Comput Biol Med 36(9):958–973. https://doi.org/10.1016/j.compbiomed.2005.04.005

    Article  Google Scholar 

  37. Ramakrishnan B, Sriraam N (2006) Internet transmission of DICOM images with effective low bandwidth utilization. Digit Signal Process A Rev J 16(6):825–831. https://doi.org/10.1016/j.dsp.2006.05.004

    Article  Google Scholar 

  38. Jyotheswar J, Mahapatra S (2007) Efficient FPGA implementation of DWT and modified SPIHT for lossless image compression. J Syst Archit 53(7):369–378. https://doi.org/10.1016/j.sysarc.2006.11.009

    Article  Google Scholar 

  39. Sanchez V, Abugharbieh R, Nasiopoulos P (2009) Symmetry-based scalable lossless compression of 3D medical image data. IEEE Trans Med Imaging 28(7):1062–1072. https://doi.org/10.1109/TMI.2009.2012899

    Article  Google Scholar 

  40. Sunil BM, Raj CP (2010) Analysis of wavelet for 3D-DWT volumetric image compression. In: Proc. - 3rd Int. Conf. Emerg. Trends Eng. Technol. ICETET 2010, no 2, pp. 180–185. https://doi.org/10.1109/ICETET.2010.74

  41. Sanchez V, Abugharbieh R, Nasiopoulos P (2010) 3-D scalable medical image compression with optimized volume of interest coding. IEEE Trans Med Imaging 29(10):1808–1820. https://doi.org/10.1109/TMI.2010.2052628

    Article  Google Scholar 

  42. Akhter S, Haque MA (2010) ECG compression using run length encoding. In: Eur. Signal Process. Conf., no. February, pp. 1645–1649

  43. Sriraam N, Shyamsunder R (2011) 3-D medical image compression using 3-D wavelet coders. Digit Signal Process A Rev J 21(1):100–109. https://doi.org/10.1016/j.dsp.2010.06.002

    Article  Google Scholar 

  44. Cyriac M, Chellamuthu C (2012) A novel visually lossless spatial domain approach for medical image compression. Eur J Sci Res 71(3):347–351

    Google Scholar 

  45. Špelič D, Žalik B (2012) Lossless compression of threshold-segmented medical images. J Med Syst 36(4):2349–2357. https://doi.org/10.1007/s10916-011-9702-5

    Article  Google Scholar 

  46. Raza M, Adnan A, Sharif M, Haider SW (2012) Lossless compression method for medical image sequences using super-spatial structure prediction and inter-frame coding. J Appl Res Technol 10(4):618–628. https://doi.org/10.22201/icat.16656423.2012.10.4.386

    Article  Google Scholar 

  47. Setia V, Kumar V (2012) Coding of DWT coefficients using run-length coding and Huffman coding for the purpose of color image compression. Int J Comput Commun Eng 6(2):201–204

    Google Scholar 

  48. Anusuya V, Raghavan VS, Kavitha G (2014) Lossless compression on MRI images using SWT. J Digit Imaging 27(5):594–600. https://doi.org/10.1007/s10278-014-9697-9

    Article  Google Scholar 

  49. Sahoo R, Roy S, Chaudhuri SS (2014) Haar wavelet transform image compression using various Run Length Encoding schemes. Adv Intell Syst Comput 327:37–42. https://doi.org/10.1007/978-3-319-11933-5_5

    Article  Google Scholar 

  50. Anusuya V, Srinivasa Raghavan V (2014) Dimensional scalable lossless compression of MRI images using Haar wavelet lifting scheme with EBCOT. Int J Imaging Syst Technol 24(2):175–181. https://doi.org/10.1002/ima.22092

    Article  Google Scholar 

  51. Senapati RK, Mankar P (2014) Improved listless embedded block partitioning algorithms for image compression. Int J Image Graph 14(04):1450020. https://doi.org/10.1142/s021946781450020x

    Article  Google Scholar 

  52. Bruylants T, Munteanu A, Schelkens P (2015) Wavelet based volumetric medical image compression. Signal Process Image Commun 31:112–133. https://doi.org/10.1016/j.image.2014.12.007

    Article  Google Scholar 

  53. Juliet S, Rajsingh EB, Ezra K (2016) A novel medical image compression using Ripplet transform. J Real-Time Image Process 11(2):401–412. https://doi.org/10.1007/s11554-013-0367-9

    Article  Google Scholar 

  54. Xiao B, Lu G, Zhang Y, Li W, Wang G (2016) Lossless image compression based on integer Discrete Tchebichef Transform. Neurocomputing 214:587–593. https://doi.org/10.1016/j.neucom.2016.06.050

    Article  Google Scholar 

  55. Ibraheem MS, Ahmed SZ, Hachicha K, Hochberg S, Garda P (2016) Medical images compression with clinical diagnostic quality using logarithmic DWT. 3rd IEEE EMBS Int. Conf. Biomed. Heal. Informatics, BHI 2016, pp. 402–405. https://doi.org/10.1109/BHI.2016.7455919.

  56. Perumal B, Rajasekaran MP (2016) A hybrid discrete wavelet transform with neural network back propagation approach for efficient medical image compression. In: 1st Int. Conf. Emerg. Trends Eng. Technol. Sci. ICETETS 2016 - Proc., pp. 2–6. https://doi.org/10.1109/ICETETS.2016.7603060

  57. Boopathiraja S (2017) A wavelet based image compression with RLC encoder. In: Comput. Methods, Commun. Tech. Informatics, pp. 289–292

  58. Lucas LFR, Rodrigues NMM, Da Silva-Cruz LA, De Faria SMM (2017) Lossless compression of medical images using 3-D predictors. IEEE Trans Med Imaging 36(11):2250–2260. https://doi.org/10.1109/TMI.2017.2714640

    Article  Google Scholar 

  59. Kalavathi P, Boopathiraja S (2017) A medical image compression technique using 2D-DWT with run length encoding. Glob J Pure Appl Math 13(5):87–96

    Google Scholar 

  60. Somassoundaram T, Subramaniam NP (2018) High performance angiogram sequence compression using 2D bi-orthogonal multi wavelet and hybrid speck-deflate algorithm. Biomed Res 18:S1–S7. https://doi.org/10.4066/biomedicalresearch.29-16-2317

    Article  Google Scholar 

  61. Boopathiraja S, Kalavathi P (2018) A near lossless multispectral image compression using 3D-DWT with application to LANDSAT images. Int J Comput Sci Eng 6(4):332–336

    Google Scholar 

  62. Parikh SS, Ruiz D, Kalva H, Fernandez-Escribano G, Adzic V (2018) High bit-depth medical image compression with HEVC. IEEE J Biomed Health Inform 22(2):552–560. https://doi.org/10.1109/JBHI.2017.2660482

    Article  Google Scholar 

  63. Chithra PL, Tamilmathi AC (2019) Image preservation using wavelet based on kronecker mask, birge-massart and parity strategy. Int J Innov Technol Explor Eng 8(11):610–619. https://doi.org/10.35940/ijitee.K1598.0881119

    Article  Google Scholar 

  64. Boopathiraja S, Kalavathi P (2019) A near lossless three-dimensional medical image comypression technique using 3D-discrete wavelet transform. Int J Biomed Eng Technol 35:191–206

    Article  Google Scholar 

  65. Haouari B (2020) 3D Medical image compression using the quincunx wavelet coupled with SPIHT. IJEECS 18:821–828. https://doi.org/10.11591/ijeecs.v18.i2.pp821-828

    Article  Google Scholar 

  66. Bairagi VK, Sapkal AM (2013) ROI-based DICOM image compression for telemedicine. Sadhana Acad Proc Eng Sci 38(1):123–131. https://doi.org/10.1007/s12046-013-0126-4

    Article  Google Scholar 

  67. Kunt M, Ikonomopoulos A, Kocher M (1985) Second-generation image-coding techniques. Proc IEEE 73(4):549–574. https://doi.org/10.1109/PROC.1985.13184

    Article  Google Scholar 

  68. Vaisey J, Gersho A (1992) Image compression with variable block size segmentation. IEEE Trans Signal Process 40(8):2040–2060. https://doi.org/10.1109/78.150005

    Article  Google Scholar 

  69. Leou FC, Chen YC (1991) A contour-based image coding technique with its texture information reconstructed by polyline representation. Signal Process 25(1):81–89. https://doi.org/10.1016/0165-1684(91)90040-P

    Article  Google Scholar 

  70. Shen L, Rangayyan RM (1997) A segmentation-based lossless image coding method for high-resolution medical image compression. IEEE Trans Med Imaging 16(3):301–307. https://doi.org/10.1109/42.585764

    Article  Google Scholar 

  71. Li S, Li W (2000) Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding. IEEE Trans Circuits Syst Video Technol 10(5):725–743. https://doi.org/10.1109/76.856450

    Article  Google Scholar 

  72. Minami G, Xiong Z, Wang A, Mehrotra S (2001) 3-D wavelet coding of video with arbitrary regions of support. IEEE Trans Circuits Syst Video Technol 11(9):1063–1068. https://doi.org/10.1109/76.946523

    Article  Google Scholar 

  73. Lu Z, William A (2001) Pearlman Center (2001) Wavelet video coding of video object by object-based SPECK algorithm. In: Pict. Coding Symp., pp. 413–416

  74. Gokturk SB, Tomasi C, Girod B, Beaulieu C (2001) Medical image compression based on region of interest, with application to colon CT images. Annu. Reports Res. React. Institute, Kyoto Univ., vol 3, pp. 2453–2456. https://doi.org/10.1109/iembs.2001.1017274

  75. JPEG2000 part-1 (2001) Information technology-JPEG 2000 image coding system-part 1: core coding system. ISO/IEC. https://jpeg.org/jpeg2000/

  76. Liu Z, Hua J, Xiong Z, Wu Q, Castleman K (2002) Lossy-to-lossless ROI coding of chromosome images using modified SPIHT and EBCOT. In: Proceedings—international symposium on biomedical imaging, vol 2002-January, pp. 317–320. https://doi.org/10.1109/ISBI.2002.1029257

  77. Dilmaghani RS, Ahmadian Ai, Ghavami M, Oghabian M, Aghvami H (2003) Multi rate/resolution control in progressive medical image transmission for the Region of Interest (ROI) using EZW. In: APBME 2003—IEEE EMBS Asian-Pacific Conf. Biomed. Eng., pp. 160–161. https://doi.org/10.1109/APBME.2003.1302633

  78. Ueno I, Pearlman WA (2003) Region-of-interest coding in volumetric images with shape-adaptive wavelet transform. Image Video Commun Process 5022:1048. https://doi.org/10.1117/12.476709

    Article  Google Scholar 

  79. JPEG2000 part-2 (2004) Information technology—JPEG 2000 image coding system: extensions

  80. Gibson D, Spann M, Woolley SI (2004) A wavelet-based region of interest encoder for the compression of angiogram video sequences. IEEE Trans Inf Technol Biomed 8(2):103–113. https://doi.org/10.1109/TITB.2004.826722

    Article  Google Scholar 

  81. Maglogiannis I, Doukas C, Kormentzas G, Pliakas T (2009) Wavelet-based compression with ROI coding support for mobile access to DICOM images over heterogeneous radio networks. IEEE Trans Inf Technol Biomed 13(4):458–466. https://doi.org/10.1109/TITB.2008.903527

    Article  Google Scholar 

  82. Lehtinen J (1999) Limiting distortion of a wavelet image codec. Acta Cybern 14:341–356

    MATH  Google Scholar 

  83. Valdes A, Trujillo M (2009) Medical image compression based on region of interest and data elimination

  84. Chen H, Braeckman G, Satti SM, Schelkens P, Munteanu A (2013) HEVC-based video coding with lossless region of interest for tele-medicine applications. In: Int. Conf. Syst. Signals, Image Process., pp. 129–132. https://doi.org/10.1109/IWSSIP.2013.6623470

  85. Gao W, Jiang M, Yu H (2013) On lossless coding for HEVC. Visual Inf Process Commun IV 8666:866601–866609. https://doi.org/10.1117/12.2010198

    Article  Google Scholar 

  86. Sanchez V, Llinas FA, Rapesta JB, Sagrista JS (2014) Improvements to HEVC intra coding for lossless medical image compression, pp. 423–423. https://doi.org/10.1109/dcc.2014.76

  87. Sanchez V, Bartrina-Rapesta J (2014) Lossless compression of medical images based on HEVC intra coding. In: ICASSP, IEEE international conference on acoustics, speech and signal processing—proceedings, pp. 6622–6626. https://doi.org/10.1109/ICASSP.2014.6854881

  88. Das S, Kundu MK (2013) Effective management of medical information through ROI-lossless fragile image watermarking technique. Comput Methods Programs Biomed 111(3):662–675. https://doi.org/10.1016/j.cmpb.2013.05.027

    Article  Google Scholar 

  89. Yee D, Soltaninejad S, Hazarika D, Mbuyi G, Barnwal R, Basu A (2017) Medical image compression based on region of interest using better portable graphics (BPG). In: 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol 2017-January, pp. 216–221. https://doi.org/10.1109/SMC.2017.8122605

  90. Eben Sophia P, Anitha J (2017) Contextual medical image compression using normalized wavelet-transform coefficients and prediction. IETE J Res 63(5):671–683. https://doi.org/10.1080/03772063.2017.1309998

    Article  Google Scholar 

  91. Devadoss CP, Sankaragomathi B (2019) Near lossless medical image compression using block BWT–MTF and hybrid fractal compression techniques. Cluster Comput 22:12929–12937. https://doi.org/10.1007/s10586-018-1801-3

    Article  Google Scholar 

  92. Allam Zanaty E, Mostafa Ibrahim S (2019) Medical image compression based on combining region growing and wavelet transform. Int J Med Imaging 7(3):57. https://doi.org/10.11648/j.ijmi.20190703.11

    Article  Google Scholar 

  93. Boopathiraja S, Kalavathi P, Surya Prasath V (2020) On a hybrid lossless compression technique for three-dimensional medical images. J Appl Clin Med Phys 1–28

  94. Sreenivasulu P, Varadarajan S (2020) An efficient lossless ROI image compression using wavelet-based modified region growing algorithm. J Intell Syst 29(1):1063–1078. https://doi.org/10.1515/jisys-2018-0180

    Article  Google Scholar 

  95. Kolda TG, Bader BW (2009) Tensor review. SIAM Rev 51(3):455–500. https://doi.org/10.1137/07070111X

    Article  MathSciNet  MATH  Google Scholar 

  96. Boopathiraja VBSPS, Kalavathi P (2020) Three dimensional radiological images compression with optimal multilinear singular value decomposition. In: Physical and engineering sciences in medicine, Springer

  97. De Lathauwer L, Vandewalle J (2004) Dimensionality reduction in higher-order signal processing and rank-(r1, r2,..., rn) reduction in multilinear algebra. Linear Algebra Appl 391:31–55

    Article  MathSciNet  Google Scholar 

  98. Smilde A, Bro R, Geladi P (2005) Multi-way analysis: applications in the chemical sciences. Wiley

  99. Cichocki A, Zdunek R, Phan AH, Amari S (2009) Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. Wiley

  100. Marco Signoretto JAKS, De Lathauwer L (2011) Nuclear norms for tensors and their use for convex multilinear estimation. In: Linear algebra applied, vol 43

  101. Sorber L, Van Barel M, De Lathauwer L (2015) Structured data fusion. IEEE J Sel Top Signal Process 9(4):586–600

    Article  Google Scholar 

  102. Abadi M et al (2016) TensorFlow: large-scale machine learning on heterogeneous distributed systems

  103. Wu Q, Xia T, Yu Y (2007) Hierarchical tensor approximation of multidimensional images. In: Proceedings—international conference on image processing, ICIP, vol 4. https://doi.org/10.1109/ICIP.2007.4379951

  104. Chen H, Lei W, Zhou S, Zhang Y (2012) An optimal-truncation-based tucker decomposition method for hyperspectral image compression. In: International geoscience and remote sensing symposium , pp 4090–4093. https://doi.org/10.1109/IGARSS.2012.6350833

  105. Dauwels J, Srinivasan K, Reddy MR, Cichocki A (2013) Near-lossless multichannel EEG compression based on matrix and tensor decompositions. IEEE J Biomed Health Inform 17(3):708–714. https://doi.org/10.1109/TITB.2012.2230012

    Article  Google Scholar 

  106. Zhang L, Zhang L, Tao D, Huang X, Du B (2015) Compression of hyperspectral remote sensing images by tensor approach. Neurocomputing 147(1):358–363. https://doi.org/10.1016/j.neucom.2014.06.052

    Article  Google Scholar 

  107. Wang L, Bai J, Wu J, Jeon G (2015) Hyperspectral image compression based on lapped transform and Tucker decomposition. Signal Process Image Commun 36:63–69. https://doi.org/10.1016/j.image.2015.06.002

    Article  Google Scholar 

  108. Ballester-Ripoll R, Pajarola R (2016) Lossy volume compression using Tucker truncation and thresholding. Vis Comput 32(11):1433–1446. https://doi.org/10.1007/s00371-015-1130-y

    Article  Google Scholar 

  109. Fang L, He N, Lin H (2017) CP tensor-based compression of hyperspectral images. J Opt Soc Am A 34(2):252. https://doi.org/10.1364/josaa.34.000252

    Article  Google Scholar 

  110. Du B, Zhang M, Zhang L, Hu R, Tao D (2017) PLTD: patch-based low-rank tensor decomposition for hyperspectral images. IEEE Trans Multimed 19(1):67–79. https://doi.org/10.1109/TMM.2016.2608780

    Article  Google Scholar 

  111. Ballester-Ripoll R, Lindstrom P, Pajarola R (2020) TTHRESH: tensor compression for multidimensional visual data. IEEE Trans Vis Comput Graph 26(9):2891–2903. https://doi.org/10.1109/TVCG.2019.2904063

    Article  Google Scholar 

  112. Liu S, Bai W, Zeng N, Wang S (2019) A fast fractal based compression for MRI images. IEEE Access 7:62412–62420

    Article  Google Scholar 

  113. Wang Q, Chen X, Wei M, Miao Z (2016) Simultaneous encryption and compression of medical images based on optimized tensor compressed sensing with 3D Lorenz. Biomed Eng Online 15(1):1–20. https://doi.org/10.1186/s12938-016-0239-1

    Article  Google Scholar 

  114. Kucherov D, Rosinska G, Khalimon N, Onikienko L (2019) Technique medical image compression by linear algebra methods. In: CEUR Workshop Proc., vol 2488, pp. 165–174

Download references

Funding

PK supported by Council of Scientific & Industrial Research (CSIR), File Number: 25(0304)/19/EMR-II/, Human Resource Development Group, and Government of India. VBSP is supported by NCATS/NIH Grant U2CTR002818, NHLBI/NIH grant U24HL148865, NIAID/NIH grant U01AI150748, Cincinnati Children's Hospital Medical Center-Advanced Research Council (ARC) Grants 2018–2020, and the Cincinnati Children's Research Foundation–Center for Pediatric Genomics (CPG) Grants 2019–2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Surya Prasath.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boopathiraja, S., Punitha, V., Kalavathi, P. et al. Computational 2D and 3D Medical Image Data Compression Models. Arch Computat Methods Eng 29, 975–1007 (2022). https://doi.org/10.1007/s11831-021-09602-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09602-w

Navigation