Skip to main content
Log in

A Systematic Review on Physiological-Based Biometric Recognition Systems: Current and Future Trends

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Biometric deals with the verification and identification of a person based on behavioural and physiological traits. This article presents recent advances in physiological-based biometric multimodalities, where we focused on finger vein, palm vein, fingerprint, face, lips, iris, and retina-based processing methods. The authors also evaluated the architecture, operational mode, and performance metrics of biometric technology. In this article, the authors summarize and study various traditional and deep learning-based physiological-based biometric modalities. An extensive review of biometric steps of multiple modalities by using different levels such as preprocessing, feature extraction, and classification, are presented in detail. Challenges and future trends of existing conventional and deep learning approaches are explained in detail to help the researcher. Moreover, traditional and deep learning methods of various physiological-based biometric systems are roughly analyzed to evaluate them. The comparison result and discussion section of this article indicate that there is still a need to develop a robust physiological-based method to advance and improve the performance of the biometric system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abbas EI, Mieee MES (2017) Face recognition rate using different classifier methods based on PCA, pp 37–40

  2. Abrishami-Moghaddam H, Farzin H, Moin MS (2008) A novel retinal identification system. Eurasip J Adv Signal Process. https://doi.org/10.1155/2008/280635

    Article  MATH  Google Scholar 

  3. Adjimi A, Hacine-Gharbi A, Ravier P, Mostefai M (2017) Extraction and selection of binarised statistical image features for fingerprint recognition. Int J Biometrics 9(1):67–80. https://doi.org/10.1504/IJBM.2017.084133

    Article  Google Scholar 

  4. Aglio-caballero A, Ríos-Sánchez B, Sánchez-Ávila C, Giles MJMD (2017) Analysis of local binary patterns and uniform local binary patterns for palm vein biometric recognition. In: 2017 international carnahan conference on security technology (ICCST). IEEE, pp 1–6

  5. Ahmadi N, Akbarizadeh G (2018) Hybrid robust iris recognition approach using iris image pre-processing, two-dimensional gabor features and multi-layer perceptron neural network/PSO. IET Biometrics 7(2):153–162. https://doi.org/10.1049/iet-bmt.2017.0041

    Article  Google Scholar 

  6. Ahmadi N, Akbarizadeh G (2018) Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3754-0

    Article  Google Scholar 

  7. Ahmadi N, Nilashi M, Samad S, Rashid TA, Ahmadi H (2019) An intelligent method for iris recognition using supervised machine learning techniques. Opt Laser Technol 120(2018):105701. https://doi.org/10.1016/j.optlastec.2019.105701

    Article  Google Scholar 

  8. Ahmed T, Sarma M (2018) An advanced fingerprint matching using minutiae-based indirect local features. Multimed Tools Appl 77(15):19931–19950. https://doi.org/10.1007/s11042-017-5444-9

    Article  Google Scholar 

  9. Aleem S, Sheng B, Li P, Yang P, Feng DD (2019) Fast and accurate retinal identification system: using retinal blood vasculature landmarks. IEEE Trans Ind Inf 15(7):4099–4110. https://doi.org/10.1109/TII.2018.2881343

    Article  Google Scholar 

  10. Ali YH, Razuqi ZN (2017) Palm vein recognition based on centerline. Iraqi J Sci 58(2):726–734

    Google Scholar 

  11. Ananth C (2017) Iris recognition using active contours. SSRN Electron J 2(1):27–32. https://doi.org/10.2139/ssrn.3028575

    Article  Google Scholar 

  12. Arsalan M, Hong HG, Naqvi RA, Lee MB, Kim MC, Kim DS et al (2017) Deep learning-based iris segmentation for iris recognition in visible light environment. Symmetry. https://doi.org/10.3390/sym9110263

    Article  Google Scholar 

  13. Barpanda SS, Sa PK, Marques O, Majhi B, Bakshi S (2018) Iris recognition with tunable filter bank based feature. Multimed Tools Appl 77(6):7637–7674. https://doi.org/10.1007/s11042-017-4668-z

    Article  Google Scholar 

  14. Benalcazar DP, Perez CA, Bastias D, Bowyer KW (2019) Iris recognition: comparing visible-light lateral and frontal illumination to NIR frontal illumination. In: Proceedings—2019 IEEE winter conference on applications of computer vision, WACV 2019, pp 867–876. https://doi.org/10.1109/WACV.2019.00097

  15. Bharadwaj S, Vatsa M, Singh R (2014) Biometric quality: a review of fingerprint, iris, and face. Eurasip J Image Video Process 2014(1):1–28. https://doi.org/10.1186/1687-5281-2014-34

    Article  Google Scholar 

  16. Bhardwaj I, Londhe ND, Kopparapu SK (2017) A spoof resistant multibiometric system based on the physiological and behavioral characteristics of fingerprint. Pattern Recognit 62:214–224. https://doi.org/10.1016/j.patcog.2016.09.003

    Article  Google Scholar 

  17. Bhavani M (2013) Human identification using finger images. Int J Comput Trends Technol 4(1):258–263

    MathSciNet  Google Scholar 

  18. Bhukya S (2019) A hybrid biometric identification and authentication system with retinal verification using AWN classifier for enhancing security. https://doi.org/10.1007/978-981-13-1580-0

  19. Borra SR, Reddy GJ, Reddy ES (2016) A broad survey on fingerprint recognition systems. In: Proceedings of the 2016 IEEE international conference on wireless communications, signal processing and networking, WiSPNET 2016, pp 1428–1434. https://doi.org/10.1109/WiSPNET.2016.7566372

  20. Boubchir L, Aberni Y, Daachi B (2018) Competitive coding scheme based on 2D log-gabor filter for palm vein recognition. In: 2018 NASA/ESA conference on adaptive hardware and systems (AHS), vol (i), pp 152–155

  21. Buciu I, Gacsadi A (2016) Biometrics systems and technologies: a survey. Int J Comput Commun Control 11(3):315–330. https://doi.org/10.15837/ijccc.2016.3.2556

    Article  Google Scholar 

  22. Cancian P, Di Donato GW, Rana V, Santambrogio MD, Elettronica D, Bioingegneria I, Milano P (2017) An embedded gabor-based palm vein recognition system, pp 405–408

  23. Cao K, Jain AK (2018) Fingerprint indexing and matching: an integrated approach. In: IEEE international joint conference on biometrics, pp 437–445. https://doi.org/10.1109/BTAS.2017.8272728

  24. Cao K, Jain AK (2019) Automated latent fingerprint recognition. IEEE Trans Pattern Anal Mach Intell 41(4):788–800. https://doi.org/10.1109/TPAMI.2018.2818162

    Article  Google Scholar 

  25. Chauhan S, Arora AS, Kaul A (2010) A survey of emerging biometric modalities. Procedia Comput Sci 2:213–218. https://doi.org/10.1016/j.procs.2010.11.027

    Article  Google Scholar 

  26. Chen Z, Huang W, Lv Z (2015) Towards a face recognition method based on uncorrelated discriminant sparse preserving projection. https://doi.org/10.1007/s11042-015-2882-0

  27. Choraś M (2007) Human lips recognition. Adv Soft Comput 45:838–843. https://doi.org/10.1007/978-3-540-75175-5_104

    Article  Google Scholar 

  28. Choraś M (2010) The lip as a biometric. Pattern Anal Appl 13(1):105–112. https://doi.org/10.1007/s10044-008-0144-8

    Article  MathSciNet  Google Scholar 

  29. Chugh T, Cao K, Jain AK (2018) Fingerprint spoof detection using minutiae-based local patches. In: IEEE international joint conference on biometrics, IJCB 2017, 2018 January, pp 581–589. https://doi.org/10.1109/BTAS.2017.8272745

  30. Czajka A, Bowyer KW (2018) Presentation attack survey. ACM Comput Surv 51(4):1–35. https://doi.org/10.1145/3232849

    Article  Google Scholar 

  31. Czajka A, Bowyer KW (2018) Presentation attack detection for iris recognition: an assessment of the state-of-the-art. ACM Comput Surv 51(4):86

    Article  Google Scholar 

  32. Czajka A, Moreira D, Bowyer KW, Flynn PJ (2019) Domain-specific human-inspired binarized statistical image features for Iris recognition. In: Proceedings of IEEE winter conference on applications of computer vision, WACV 2019, pp 959–967. https://doi.org/10.1109/WACV.2019.00107

  33. Dargan S, Kumar M (2020) A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Syst Appl 143:113114. https://doi.org/10.1016/j.eswa.2019.113114

    Article  Google Scholar 

  34. Darlow LN, Rosman B (2018) Fingerprint minutiae extraction using deep learning. In: IEEE international joint conference on biometrics, IJCB 2017, 2018 January, pp 22–30. https://doi.org/10.1109/BTAS.2017.8272678

  35. Das S, Muhammad K, Bakshi S, Mukherjee I, Sa PK, Sangaiah AK, Bruno A (2019) Lip biometric template security framework using spatial steganography. Pattern Recognit Lett 126:102–110. https://doi.org/10.1016/j.patrec.2018.06.026

    Article  Google Scholar 

  36. Deljavan Amiri M, Akhlaqian Tab F, Barkhoda W (2009) Retina identification based on the pattern of blood vessels using angular and radial partitioning. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 5807 LNCS, pp 732–739. https://doi.org/10.1007/978-3-642-04697-1_68

  37. Deng J (2017) Marginal loss for deep face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops

  38. Deng J (2019) ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, no 1

  39. Deng J, Lu X (2019) Lightweight face recognition challenge. In: Proceedings of the international conference on computer vision workshop. https://doi.org/10.1109/ICCVW.2019.00322

  40. Ding H, Zhou SK, Chellappa R (2017) FaceNet2ExpNet: regularizing a deep face recognition net for expression recognition. In: Proceedings of the12th IEEE international conference on automatic face & gesture recognition (FG 2017), pp 118–126. https://doi.org/10.1109/FG.2017.23

  41. Dongyang DU, Lijun LU, Ruiyang FU, Lisha Y, Wufan C, Yaqin LIU (2019) Palm vein recognition based on end-to-end convolutional neural network 39(2):207–214. https://doi.org/10.12122/j.issn.1673-4254.2019.02.13

    Article  Google Scholar 

  42. Donida Labati R, Genovese A, Muñoz E, Piuri V, Scotti F (2018) A novel pore extraction method for heterogeneous fingerprint images using convolutional neural networks. Pattern Recognit Lett 113:58–66. https://doi.org/10.1016/j.patrec.2017.04.001

    Article  Google Scholar 

  43. Dua M, Gupta R, Khari M, Crespo RG (2019) Biometric iris recognition using radial basis function neural network. Soft Comput 23(22):11801–11815. https://doi.org/10.1007/s00500-018-03731-4

    Article  Google Scholar 

  44. Duan Y, Lu J, Member S, Feng J, Zhou J (2017) Context-aware local binary feature learning for face recognition 8828:1–14. https://doi.org/10.1109/TPAMI.2017.2710183

    Article  Google Scholar 

  45. Engineering C, Gables C (2017) Low resolution face recognition in surveillance systems using discriminant correlation analysis, pp 912–917. https://doi.org/10.1109/FG.2017.130

  46. Fachrurrozi M (2017) Multi-object face recognition using content based image retrieval (CBIR), no x, pp 193–197

  47. Fairuz MS, Habaebi MH, Elsheikh EMA (2019) Pre-trained based CNN model to identify finger vein. Bull Electr Eng Inform 8(3):855–862. https://doi.org/10.11591/eei.v8i3.1505

    Article  Google Scholar 

  48. Fronitasari D, Indonesia U, Gunawan D, Indonesia U (2017) Palm vein recognition by using modified of local binary pattern (LBP) for extraction feature, pp 18–22

  49. Gao Y, Zhao M, Yuille AL (2017). Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. https://doi.org/10.1109/TIP.2017.2675341

    Article  Google Scholar 

  50. Gomez-barrero M, Kolberg J, Busch C (2018) Towards multi-modal finger presentation attack detection. In: 2018 14th international conference on signal-image technology & internet-based systems (SITIS), pp 547–552. https://doi.org/10.1109/SITIS.2018.00089

  51. Gumede A, Viriri S, Gwetu M (2017) Hybrid component-based face recognition. In: Proceedings of the conference on information communication technology and society, pp 0–5

  52. Guo X, Zhu E, Yin J (2018) A fast and accurate method for detecting fingerprint reference point. Neural Comput Appl 29(1):21–31. https://doi.org/10.1007/s00521-016-2285-9

    Article  Google Scholar 

  53. Hamdan B, Mokhtar K (2016) Face recognition using angular radial transform. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2016.10.006

    Article  Google Scholar 

  54. Harish M, Karthick R, Rajan RM, Vetriselvi V (2019) Iccce 2018. In: Proceedings of the international conference on communications and cyber physical engineering 2018, vol 500. https://doi.org/10.1007/978-981-13-0212-1

  55. Hassner T, Sahin G, Medioni G, Masi I, Tu A (2019) Face-specific data augmentation for unconstrained face recognition. Int J Comput Vis 127:642–667. https://doi.org/10.1007/s11263-019-01178-0

    Article  Google Scholar 

  56. Hatanaka Y, Tajima M, Kawasaki R, Saito K, Ogohara K, Muramatsu C, Fujita H (2017) Retinal biometrics based on iterative closest point algorithm. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. https://doi.org/10.1109/EMBC.2017.8036840

    Article  Google Scholar 

  57. Haware S, Barhatte A (2017) Retina based biometric identification using SURF and ORB feature descriptors. In: 2017 international conference on microelectronic devices, circuits and systems, ICMDCS 2017, 2017 January, pp 1–6. https://doi.org/10.1109/ICMDCS.2017.8211697

  58. Heinsohn D, Villalobos E, Prieto L, Mery D (2019) Face recognition in low-quality images using adaptive sparse representations. Image Vis Comput 85:46–58. https://doi.org/10.1016/j.imavis.2019.02.012

    Article  Google Scholar 

  59. Hemanth J (2018) Palm vein recognition based on competitive code, LBP and DCA fusion strategy

  60. Hofbauer H, Jalilian E, Uhl A (2019) Exploiting superior CNN-based iris segmentation for better recognition accuracy. Pattern Recognit Lett 120:17–23. https://doi.org/10.1016/j.patrec.2018.12.021

    Article  Google Scholar 

  61. Hosny KM, Elaziz MA (n.d.) Face recognition using exact Gaussian-hermit moments. https://doi.org/10.1007/978-3-030-03000-1

  62. Hou B, Yan R (2019) Convolutional auto-encoder model for finger-vein verification. IEEE Trans Instrum Meas. https://doi.org/10.1109/tim.2019.2921135

    Article  Google Scholar 

  63. Hsieh SH, Li YH, Wang W, Tien CH (2018) A novel anti-spoofing solution for iris recognition toward cosmetic contact lens attack using spectral ICA analysis. Sensors (Switzerland). https://doi.org/10.3390/s18030795

    Article  Google Scholar 

  64. Hu Y, Sirlantzis K, Howells G (2017) A novel iris weight map method for less constrained iris recognition based on bit stability and discriminability. Image Vis Comput 58:168–180. https://doi.org/10.1016/j.imavis.2016.05.003

    Article  Google Scholar 

  65. Huang J, Zhang Y, Zhang H, Cheng K (2019) Sparse representation face recognition based on gabor and CSLDP feature fusion. In: 2019 Chinese control and decision conference (CCDC), no 1, pp 5697–5701

  66. Hussein ME, Spinoulas L, Xiong F, Abd-Almageed W (2019) Fingerprint presentation attack detection using a novel multi-spectral capture device and patch-based convolutional neural networks. In: 10th IEEE international workshop on information forensics and security. WIFS 2018:1–8. https://doi.org/10.1109/WIFS.2018.8630773

    Article  Google Scholar 

  67. Ito K, Aoki T (2018) Recent advances in biometric recognition. ITE Trans Media Technol Appl 6(1):64–80. https://doi.org/10.3169/mta.6.64

    Article  Google Scholar 

  68. Jacob IJ (2019) Capsule network based biometric recognition system 01(02):83–93

    Google Scholar 

  69. Jain A, East L, Ruud B, Pankanti S, Yorktown H (2002) Introduction to biometrics. Anil Jain Michigan State University. Biometrics: Personal Identification in Networked Society (ii), p 19

  70. Jain AK, Kumar A (2012) Biometric recognition: an overview, pp 49–79. https://doi.org/10.1007/978-94-007-3892-8_3

  71. Jalilian E, Uhl A (2019) Enhanced segmentation-CNN based finger-vein recognition by joint training with automatically generated and manual labels. In: 2019 IEEE 5th international conference on identity, security, and behavior analysis (ISBA), pp 1–8. https://doi.org/10.1109/isba.2019.8778522

  72. Jang HU, Kim D, Mun SM, Choi S, Lee HK (2017) DeepPore: fingerprint pore extraction using deep convolutional neural networks. IEEE Signal Process Lett 24(12):1808–1812. https://doi.org/10.1109/LSP.2017.2761454

    Article  Google Scholar 

  73. Jasim YA, Al-Ani AA, Al-Ani LA (2019) Iris recognition using principal component analysis. In: Proceedings—2018 1st annual international conference on information and sciences, AiCIS 2018, pp 89–95. https://doi.org/10.1109/AiCIS.2018.00028

  74. Jeon WS, Rhee SY (2017) Fingerprint pattern classification using convolution neural network. Int J Fuzzy Logic Intell Syst 17(3):170–176. https://doi.org/10.5391/IJFIS.2017.17.3.170

    Article  Google Scholar 

  75. Ji H, Sun Q, Ji Z, Yuan Y, Zhang G (2017) Collaborative probabilistic labels for face recognition from single sample per person. Pattern Recognit 62:125–134. https://doi.org/10.1016/j.patcog.2016.08.007

    Article  Google Scholar 

  76. Joshi I, Anand A, Vatsa M, Singh R, Roy SD, Kalra PK (2019) Latent fingerprint enhancement using generative adversarial networks. In: Proceedings—2019 IEEE winter conference on applications of computer vision, WACV 2019, pp 895–903. https://doi.org/10.1109/WACV.2019.00100

  77. Kang W, Lu Y, Li D, Jia W (2019) From noise to feature: Exploiting intensity distribution as a novel soft biometric trait for finger vein recognition. IEEE Trans Inf Forens Secur 14(4):858–869

    Article  Google Scholar 

  78. Kaur B, Singh S, Kumar J (2018) Robust iris recognition using moment invariants. Wireless Pers Commun 99(2):799–828. https://doi.org/10.1007/s11277-017-5153-8

    Article  Google Scholar 

  79. Keilbach P, Kolberg J, Gomez-Barrero M, Busch C, Langweg H (2018) Fingerprint presentation attack detection using laser speckle contrast imaging. In: 2018 international conference of the biometrics special interest group, BIOSIG 2018, pp 1–6. https://doi.org/10.23919/BIOSIG.2018.8552931

  80. Kerrigan D, Trokielewicz M, Czajka A, Bowyer K (2019) Iris recognition with image segmentation employing retrained off-the-shelf deep neural networks. http://arxiv.org/abs/1901.01028

  81. Khan T, Donald B, Khan M, Kong Y (1983) Efficient hardware implementation for fingerprint image enhancement using anisotropic gaussian filter. IEEE Trans Image Process 23(1):309–317. https://doi.org/10.1002/qua.560230126

    Article  MATH  Google Scholar 

  82. Khan AI, Wani MA (2019) Patch-based segmentation of latent fingerprint images using convolutional neural network. Appl Artif Intell 33(1):87–100. https://doi.org/10.1080/08839514.2018.1526704

    Article  Google Scholar 

  83. Khodadoust J, Khodadoust AM (2017) Fingerprint indexing based on minutiae pairs and convex core point. Pattern Recognit 67:110–126

    Article  Google Scholar 

  84. Kim H, Cui X, Kim MG, Nguyen THB (2019) Fingerprint generation and presentation attack detection using deep neural networks. In: Proceedings—2nd international conference on multimedia information processing and retrieval, MIPR 2019, pp 375–378. https://doi.org/10.1109/MIPR.2019.00074

  85. Kr P, Lenc L (2019) Novel texture descriptor family for face recognition 2:37–47. https://doi.org/10.1007/978-3-030-20915-5

    Article  Google Scholar 

  86. Kr P, Lenc L (2019) Enhanced local binary patterns for automatic face recognition 2:27–36. https://doi.org/10.1007/978-3-030-20915-5

    Article  Google Scholar 

  87. Král P, Lenc L and Vrba A (2019) Enhanced local binary patterns for automatic face recognition. In: International conference on artificial intelligence and soft computing. Springer, Cham, pp 27–36

  88. Krish RP, Fierrez J, Ramos D, Alonso-Fernandez F, Bigun J (2019) Improving automated latent fingerprint identification using extended minutia types. Inf Fusion 50:9–19. https://doi.org/10.1016/j.inffus.2018.10.001

    Article  Google Scholar 

  89. Kumar SVM, Nishanth R, Sani N, Joseph AJ, Martin A (2019) Specular reflection removal using morphological filtering for accurate iris recognition. In: 6th IEEE international conference on smart structures and systems, ICSSS 2019, pp 1–4. https://doi.org/10.1109/ICSSS.2019.8882863

  90. Lee EC, Jung H, Kim D (2011) New finger biometric method using near infrared imaging. Sensors 11(3):2319–2333. https://doi.org/10.3390/s110302319

    Article  Google Scholar 

  91. Li C (2017) Dependence structure of gabor wavelets for face recognition, pp 0–4

  92. Li J, Feng J, Kuo CCJ (2018) Deep convolutional neural network for latent fingerprint enhancement. Signal Process Image Commun 60:52–63. https://doi.org/10.1016/j.image.2017.08.010

    Article  Google Scholar 

  93. Li L, Ge H, Tong Y, Zhang Y (2017). Face recognition using gabor-based feature extraction and feature space transformation fusion method for single image per person problem. https://doi.org/10.1007/s11063-017-9693-4

    Article  Google Scholar 

  94. Li G, Kim J (2016) Author’s accepted manuscript palmprint recognition with local micro-structure tetra pattern reference. Pattern Recognit. https://doi.org/10.1016/j.patcog.2016.06.025

    Article  Google Scholar 

  95. Lin BS, Yao YH, Liu CF, Lien CF, Lin BS (2017) Impact of the lips for biometrics. IEEE Access 5:794–801. https://doi.org/10.1109/ACCESS.2017.2649838

    Article  Google Scholar 

  96. Linsangan NB, Panganiban AG, Flores PR, Poligratis HAT, Victa AS, Torres JL, Villaverde J (2019) Real-time iris recognition system for non-ideal iris images. ACM Int Conf Proc Ser. https://doi.org/10.1145/3313991.3314002

    Article  Google Scholar 

  97. Liu JLC, Chen X, Zhou J, Tan T, Zheng N, Zha H, Hutchison D (2018) Pattern recognition and computer vision

  98. Liu X, Kan M, Wu W, Shan S (2017) VIPLFaceNet : an open source deep face recognition SDK 11(2):208–218

    Google Scholar 

  99. Liu N, Liu J, Sun Z, Tan T (2017) A code-level approach to heterogeneous iris recognition. IEEE Trans Inf Forens Secur 12(10):2373–2386. https://doi.org/10.1109/TIFS.2017.2686013

    Article  Google Scholar 

  100. Liu Y, Member S, Lin C, Guo J, Member S (2012) Impact of the lips in facial biometrics 21(6):3092–3101

    Google Scholar 

  101. Liu H, Yang L, Yang G, Yin Y (2018) Discriminative binary descriptor for finger vein recognition. IEEE Access 6:5795–5804. https://doi.org/10.1109/ACCESS.2017.2787543

    Article  Google Scholar 

  102. Liu H, Yang G, Yang L, Yin Y (2019) Learning personalized binary codes for finger vein recognition. Neurocomputing 365:62–70. https://doi.org/10.1016/j.neucom.2019.07.057

    Article  Google Scholar 

  103. Liu M, Zhou Z, Shang P, Xu D (2019) Fuzzified image enhancement for deep learning in iris recognition. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/tfuzz.2019.2912576

    Article  Google Scholar 

  104. Llano EG, García Vázquez MS, Vargas JMC, Fuentes LMZ, Ramírez Acosta AA (2018) Optimized robust multi-sensor scheme for simultaneous video and image iris recognition. Pattern Recognit Lett 101:44–51. https://doi.org/10.1016/j.patrec.2017.11.012

    Article  Google Scholar 

  105. Lu J, Member S, Liong VE, Member S, Zhou J (2017) Simultaneous local binary feature learning and encoding for homogeneous and heterogeneous face recognition 8828:1–14. https://doi.org/10.1109/TPAMI.2017.2737538

    Article  Google Scholar 

  106. Lu Yu, Xie S, Wu S (2019) Exploring competitive features using deep convolutional neural network for finger vein recognition. IEEE Access 7:35113–35123. https://doi.org/10.1109/ACCESS.2019.2902429

    Article  Google Scholar 

  107. Lu Y, Yan J, Gu K (2018) Review on automatic lip reading techniques. Int J Pattern Recognit Artif Intell 32(7):1–21. https://doi.org/10.1142/S0218001418560074

    Article  Google Scholar 

  108. Lv J (2018) A new discriminative collaborative neighbor representation method for robust face recognition, pp 74713–74727

  109. Lv J-J, Shao X, Huang J, Zhou X, Zhou X, Lv J, Zhou X (2016) Face-specific data augmentation for unconstrained face recognition. Neurocomputing. https://doi.org/10.1016/j.neucom.2016.12.025

    Article  Google Scholar 

  110. Malik F, Azis A, Nasrun M, Setianingsih C, Murti MA (2018) Face recognition in night day using method eigenface, pp 103–108

  111. Manickam A, Devarasan E, Manogaran G, Priyan MK, Varatharajan R, Hsu CH, Krishnamoorthi R (2019) Score level based latent fingerprint enhancement and matching using SIFT feature. Multimed Tools Appl 78(3):3065–3085. https://doi.org/10.1007/s11042-018-5633-1

    Article  Google Scholar 

  112. Mariño C, Penedo MG, Penas M, Carreira MJ, Gonzalez F (2006) Personal authentication using digital retinal images. Pattern Anal Appl 9(1):21–33. https://doi.org/10.1007/s10044-005-0022-6

    Article  MathSciNet  Google Scholar 

  113. Marra F, Poggi G, Sansone C, Verdoliva L (2018) A deep learning approach for iris sensor model identification. Pattern Recognit Lett 113:46–53. https://doi.org/10.1016/j.patrec.2017.04.010

    Article  Google Scholar 

  114. Mathematics A (2018) Biometric retinal security system for user identification and authentication in smartphones 119(14):187–202

    Google Scholar 

  115. Mazumdar JB (2018) Retina based biometric authentication system: a review. Int J Adv Res Comput Sci 9(1):711–718. https://doi.org/10.26483/ijarcs.v9i1.5322

    Article  Google Scholar 

  116. Mazumdar JB, Nirmala SR (2018) Retina based biometric authentication system: a review. Int J Adv Res Comp Sci 9(1):711–718

  117. Mazumdar J, Nirmala SR (2019) Person identification using parabolic model-based algorithm in color retinal images. https://doi.org/10.18178/ijeetc.8.6.358-366

  118. Meng XJ, Yin YL, Yang GP, Xi XM (2013) Retinal identification based on an improved circular gabor filter and scale invariant feature transform. Sensors (Switzerland) 13(7):9248–9266. https://doi.org/10.3390/s130709248

    Article  Google Scholar 

  119. Minaee S, Abdolrashidi A (2019) DeepIris: iris recognition using a deep learning approach. http://arxiv.org/abs/1907.09380

  120. Mir SA, Khan S, Bhat MA, Mehraj H (2018) Person identification by lips using SGLDM and support vector machine 4(1):152–157

    Google Scholar 

  121. Miura N, Nagasaka A, Miyatake T (2004) Feature extraction of finger vein patterns based on iterative line tracking and its application to personal identification. Syst Comput Jpn 35(7):61–71. https://doi.org/10.1002/scj.10596

    Article  Google Scholar 

  122. Miura N, Nagasaka A, Miyatake T (2007) Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Trans Inf Syst E90-D(8):1185–1194. https://doi.org/10.1093/ietisy/e90-d.8.1185

    Article  Google Scholar 

  123. Moorfield J, Wang S, Yang W, Bedari A, Van Der Kamp P (2020) A Möbius transformation based model for fingerprint minutiae variations. Pattern Recognit 98:107054. https://doi.org/10.1016/j.patcog.2019.107054

    Article  Google Scholar 

  124. Morales S, Naranjo V, Angulo J, Legaz-Aparicio AG, Verdú-Monedero R (2017) Retinal network characterization through fundus image processing: significant point identification on vessel centerline. Signal Process Image Commun 59:50–64. https://doi.org/10.1016/j.image.2017.03.013

    Article  Google Scholar 

  125. Mura V, Orru G, Casula R, Sibiriu A, Loi G, Tuveri P et al. (2018) LivDet 2017 fingerprint liveness detection competition 2017. In: Proceedings—2018 international conference on biometrics, ICB 2018, pp 297–302. https://doi.org/10.1109/ICB2018.2018.00052

  126. Nachar R, Inaty E, Bonnin PJ, Alayli Y (2020) Hybrid minutiae and edge corners feature points for increased fingerprint recognition performance. Pattern Anal Appl 23(1):213–222

    Article  Google Scholar 

  127. Naseem I, Aleem A, Togneri R, Bennamoun M (2017) Iris recognition using class-specific dictionaries. Comput Electr Eng 62:178–193. https://doi.org/10.1016/j.compeleceng.2015.12.017

    Article  Google Scholar 

  128. Nguyen DL, Cao K, Jain AK (2019) Automatic latent fingerprint segmentation. In: 2018 IEEE 9th international conference on biometrics theory, applications and systems, BTAS 2018, pp 1–9. https://doi.org/10.1109/BTAS.2018.8698544

  129. Nguyen DL, Cao K, Jain AK (2018) Robust minutiae extractor: integrating deep networks and fingerprint domain knowledge. In: Proceedings—2018 international conference on biometrics, ICB 2018, pp 9–16. https://doi.org/10.1109/ICB2018.2018.00013

  130. Nguyen K, Fookes C, Jillela R, Sridharan S, Ross A (2017) Long range iris recognition: a survey. Pattern Recognit 72:123–143. https://doi.org/10.1016/j.patcog.2017.05.021

    Article  Google Scholar 

  131. Nguyen K, Fookes C, Ross A, Sridharan S (2017) Iris recognition with off-the-shelf CNN features: a deep learning perspective. IEEE Access 6:18848–18855. https://doi.org/10.1109/ACCESS.2017.2784352

    Article  Google Scholar 

  132. Oliveira A, Pereira S, Silva CA (2018) Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 112:229–242. https://doi.org/10.1016/j.eswa.2018.06.034

    Article  Google Scholar 

  133. Pandya B, Cosma G, Alani AA, Taherkhani A, Bharadi V, McGinnity TM (2018) Fingerprint classification using a deep convolutional neural network. In: 2018 4th international conference on information management, ICIM 2018, pp 86–91. https://doi.org/10.1109/INFOMAN.2018.8392815

  134. Panetta K, Kamath SKM, Rajeev S, Agaian SS (2019) LQM: localized quality measure for fingerprint image enhancement. IEEE Access 7:104567–104576. https://doi.org/10.1109/access.2019.2931980

    Article  Google Scholar 

  135. Parihar RS, Jain S (2019) A robust method to recognize palm vein using SIFT and SVM classifier 1:1703–1710

    Google Scholar 

  136. Park Y, Jang U, Lee EC (2018) Statistical anti-spoofing method for fingerprint recognition. Soft Comput 22(13):4175–4184. https://doi.org/10.1007/s00500-017-2707-3

    Article  Google Scholar 

  137. Park K, Song M, Youn Kim S (2018) The design of a single-bit CMOS image sensor for iris recognition applications. Sensors (Switzerland). https://doi.org/10.3390/s18020669

    Article  Google Scholar 

  138. Pei T, Zhang L, Wang B (2016) Decision Pyramid Classifier for face recognition under complex variations using single sample per person. Pattern Recognit. https://doi.org/10.1016/j.patcog.2016.11.016

    Article  Google Scholar 

  139. Peng C, Gao X, Wang N, Li J (2018) Face recognition from multiple stylistic sketches: scenarios, datasets, and evaluation. Pattern Recognit 84:262–272. https://doi.org/10.1016/j.patcog.2018.07.014

    Article  Google Scholar 

  140. Peralta D, García S, Benitez JM, Herrera F (2017) Minutiae-based fingerprint matching decomposition: methodology for big data frameworks. Inf Sci 408:198–212. https://doi.org/10.1016/j.ins.2017.05.001

    Article  Google Scholar 

  141. Piciucco E, Maiorana E, Campisi P (2017) Biometric fusion for palm-vein-based recognition systems palm vein biometric recognition: state of the art, pp 18–28. https://doi.org/10.1007/978-3-319-67639-5

  142. Piciucco E, Maiorana E, Campisi P (2018) Palm vein recognition using a high dynamic range approach, pp 1–8. https://doi.org/10.1049/iet-bmt.2017.0192

  143. Qin H, He X, Yao X, Li H (2017) Finger-vein verification based on the curvature in Radon space. Expert Syst Appl 82:151–161. https://doi.org/10.1016/j.eswa.2017.03.068

    Article  Google Scholar 

  144. Qin H, Wang P (2019) Finger-vein verification based on LSTM recurrent neural networks. Appl Sci (Switzerland) 9(8):1–18. https://doi.org/10.3390/app9081687

    Article  Google Scholar 

  145. Qureshi I, Khan MA, Sharif M, Saba T, Ma J (2020) Detection of glaucoma based on cup-to-disc ratio using fundus images 19(1):1–16

    Google Scholar 

  146. Qureshi I, Ma J, Abbas Q (2019) Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry 11(6):1–34. https://doi.org/10.3390/sym11060749

    Article  Google Scholar 

  147. Qureshi I, Ma J, Shaheed K (2019) A hybrid proposed fundus image enhancement framework for diabetic retinopathy, pp 1–16. https://doi.org/10.3390/a12010014

  148. Raja KB, Raghavendra R, Venkatesh S, Busch C (2017) Multi-patch deep sparse histograms for iris recognition in visible spectrum using collaborative subspace for robust verification. Pattern Recognit Lett 91:27–36. https://doi.org/10.1016/j.patrec.2016.12.025

    Article  Google Scholar 

  149. Ramachandra R, Raja KB, Venkatesh SK, Busch C (2019) Design and development of low-cost sensor to capture ventral and dorsal finger vein for biometric authentication. IEEE Sens J 19(15):6102–6111. https://doi.org/10.1109/JSEN.2019.2906691

    Article  Google Scholar 

  150. Rana HK (2017) SM Gr up SM journal of iris recognition system using PCA based on DWT. SM J Biometrics Biostat 2:1015. https://doi.org/10.5281/zenodo.2580202

    Article  Google Scholar 

  151. Ranjani R, Priya C (2018) A survey on face recognition techniques: a review. Int J Pure Appl Math 118:253–274

    Google Scholar 

  152. Rathgeb C, Wagner J, Busch C (2019) SIFT-based iris recognition revisited: prerequisites, advantages and improvements. Pattern Anal Appl 22(3):889–906. https://doi.org/10.1007/s10044-018-0719-y

    Article  MathSciNet  Google Scholar 

  153. Roy ND, Biswas A (2019) Fast and robust retinal biometric key generation using deep neural nets

  154. Rui Z, Yan Z (2019) A survey on biometric authentication: toward secure and privacy-preserving identification. IEEE Access 7:5994–6009. https://doi.org/10.1109/ACCESS.2018.2889996

    Article  Google Scholar 

  155. Sahu B, Kumar Sa P, Bakshi S, Sangaiah AK (2018) Reducing dense local feature key-points for faster iris recognition. Comput Electr Eng 70:939–949. https://doi.org/10.1016/j.compeleceng.2017.12.048

    Article  Google Scholar 

  156. Sang J, Wang H, Qian Q, Wu H, Chen Y (2018) An efficient fingerprint identification algorithm based on minutiae and invariant moment. Pers Ubiquit Comput 22(1):71–80. https://doi.org/10.1007/s00779-017-1094-1

    Article  Google Scholar 

  157. De Santis M, Agnelli S, Don V, Gnocchi C (2017) 3D ultrasound palm vein recognition through the centroid method for biometric purposes, pp 1–4

  158. Shaheed K, Liu H, Yang G, Qureshi I, Gou J, Yin Y (2018) A systematic review of finger vein recognition techniques. Information (Switzerland). https://doi.org/10.3390/info9090213

    Article  Google Scholar 

  159. Shaheed K, Yang L, Yang G, Qureshi I, Yin Y (2018) Novel image quality assessment and enhancement techniques for finger vein recognition, pp 223–231

  160. Shao L, Zhu R, B QZ (2016) A finger vein identification system based on image quality assessment, vol 3, pp 711–719. https://doi.org/10.1007/978-3-319-46654-5

  161. Sharma RP, Dey S (2019). Quality analysis of fingerprint images using local phase quantization. https://doi.org/10.1007/978-3-030-29888-3_53

    Article  Google Scholar 

  162. Shuyi L, Haigang Z, Jinfeng Y (2019) Finger vein recognition based on local graph structural coding and CNN. May, vol 8. https://doi.org/10.1117/12.2524152

  163. Soh SC, Ibrahim MZ, Abas MF (2019) Image fusion based multi resolution and frequency partition discrete cosine transform for palm vein recognition. In: 2019 IEEE 6th international conference on industrial engineering and applications (ICIEA), pp 367–371

  164. Soh SC, Ibrahim MZ, Yakno MB, Mulvaney DJ (2017) Palm vein recognition using scale invariant feature transform with RANSAC mismatching removal. IT Converg Secur 2017:2. https://doi.org/10.1007/978-981-10-6451-7

    Article  Google Scholar 

  165. Song JM, Kim W, Park KR (2019) Finger-vein recognition based on deep densenet using composite image. IEEE Access 7:66845–66863. https://doi.org/10.1109/ACCESS.2019.2918503

    Article  Google Scholar 

  166. de Souza GB, Santos DFdS, Pires RG, Marana AN, Papa JP (2018) Deep features extraction for robust fingerprint spoofing attack detection. J Artif Intell Soft Comput Res 9(1):41–49. https://doi.org/10.2478/jaiscr-2018-0023

    Article  Google Scholar 

  167. Sun Y, Wang X, Tang X (2013) Deep convolutional network cascade for facial point detection. https://doi.org/10.1109/CVPR.2013.446

  168. Sundararajan K, Woodard DL (2018) Deep learning for biometrics: a survey. ACM Comput Surv. https://doi.org/10.1145/3190618

    Article  Google Scholar 

  169. Sutanty E, Rahayu DA, Rodiah, Susetianingtias DT, Madenda S (2017) Retinal blood vessel segmentation and bifurcation detection using combined filters. In: Proceeding—2017 3rd international conference on science in information technology: theory and application of IT for education, industry and society in big data era, ICSITech 2017, 2018 January, pp 563–567. https://doi.org/10.1109/ICSITech.2017.8257176

  170. Svoboda J, Monti F, Bronstein MM (2018) Generative convolutional networks for latent fingerprint reconstruction. In: IEEE international joint conference on biometrics, IJCB 2017, 2018 January, pp 429–436. https://doi.org/10.1109/BTAS.2017.8272727

  171. Syarif MA, Ong TS, Teoh ABJ, Tee C (2017) Enhanced maximum curvature descriptors for finger vein verification. Multimed Tools Appl 76(5):6859–6887. https://doi.org/10.1007/s11042-016-3315-4

    Article  Google Scholar 

  172. Tams B (2013) Absolute fingerprint pre-alignment in minutiae-based cryptosystems. In: BIOSIG 2013—proceedings of the 12th international conference of the biometrics special interest group, pp 1–12

  173. Tang Z, Wu X, Fu B, Chen W, Feng H (2018) Fast face recognition based on fractal theory. Appl Math Comput 321:721–730. https://doi.org/10.1016/j.amc.2017.11.017

    Article  MathSciNet  MATH  Google Scholar 

  174. Tann H, Zhao H, Reda S (2019) A resource-efficient embedded iris recognition system using fully convolutional networks. ACM J Emerg Technol Comput Syst 16(1):1–23. https://doi.org/10.1145/3357796

    Article  Google Scholar 

  175. Tertychnyi P, Ozcinar C, Anbarjafari G (2018) Low-quality fingerprint classification using deep neural network. IET Biometrics 7(6):550–556. https://doi.org/10.1049/iet-bmt.2018.5074

    Article  Google Scholar 

  176. Thapar D, Jaswal G, Nigam A (2018) PVSNet: palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features. In: 2019 IEEE 5th international conference on identity, security, and behavior analysis (ISBA), pp 1–8

  177. Thompson J, Flynn P, Boehnen C, Santos-Villalobos H (2019) Assessing the impact of corneal refraction and iris tissue non-planarity on iris recognition. IEEE Trans Inf Forens Secur 14(8):2102–2112. https://doi.org/10.1109/TIFS.2018.2869342

    Article  Google Scholar 

  178. Tran MH, Duong TN, Nguyen DM, Dang QH (2017) A local feature vector for an adaptive hybrid fingerprint matcher. In: Proceedings of KICS-IEEE international conference on information and communications with samsung LTE and 5G special workshop, ICIC 2017, pp 249–253. https://doi.org/10.1109/INFOC.2017.8001668

  179. Travieso CM, Ravelo-García AG, Alonso JB, Canino-Rodríguez JM, Dutta MK (2019) Improving the performance of the lip identification through the use of shape correction. Appl Intell 49(5):1823–1840

    Article  Google Scholar 

  180. Travieso CM, Zhang J, Miller P, Alonso JB (2014) Using a discrete Hidden Markov Model Kernel for lip-based biometric identification. Image Vis Comput 32(12):1080–1089. https://doi.org/10.1016/j.imavis.2014.10.001

    Article  Google Scholar 

  181. Unar JA, Seng WC, Abbasi A (2014) A review of biometric technology along with trends and prospects. Pattern Recognit 47(8):2673–2688. https://doi.org/10.1016/j.patcog.2014.01.016

    Article  Google Scholar 

  182. Wan C, Wang L, Phoha VV (2018) A survey on gait recognition. ACM Comput Surv. https://doi.org/10.1145/3230633

    Article  Google Scholar 

  183. Wang X (2019) Palm vein recognition based on competitive code and, pp 179–183

  184. Wang K, Kumar A (2019) Toward more accurate iris recognition using dilated residual features. IEEE Trans Inf Forens Secur 14(12):3233–3245

    Article  Google Scholar 

  185. Wang Z, Ma S, Han M, Hu G (2017) Long-distance/environment face image enhancement method for recognition, no 1, pp 501–511. https://doi.org/10.1007/978-3-319-71607-7

  186. Wang H, Yang X, Ma L, Liang R (2017) Fingerprint pore extraction using U-Net based fully convolutional network 1:474–483. https://doi.org/10.1007/978-3-319-69923-3

    Article  Google Scholar 

  187. Xi X, Yang L (2017) Learning discriminative binary codes for finger vein recognition. Pattern Recognit 66:26–33. https://doi.org/10.1016/j.patcog.2016.11.002

    Article  Google Scholar 

  188. Xia Z, Lv R, Zhu Y, Ji P, Sun H, Shi YQ (2017) Fingerprint liveness detection using gradient-based texture features. SIViP 11(2):381–388. https://doi.org/10.1007/s11760-016-0936-z

    Article  Google Scholar 

  189. Xin M (2017) Palm vein recognition method based on fusion of local Gabor histograms. J China Univ Posts Telecommun 24(6):55–66. https://doi.org/10.1016/S1005-8885(17)60242-5

    Article  Google Scholar 

  190. Yahaya YH, Shamsuddin SM, Leng WY, Technology D, Pertahanan U (2016) Finger vein feature extraction using discretization. November, pp 28–29

  191. Yang W, Huang X, Zhou F, Liao Q (2014) Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion. Inf Sci 268:20–32. https://doi.org/10.1016/j.ins.2013.10.010

    Article  Google Scholar 

  192. Yang W, Ji W, Xue JH, Ren Y, Liao Q (2019) A hybrid finger identification pattern using polarized depth-weighted binary direction coding. Neurocomputing 325:260–268. https://doi.org/10.1016/j.neucom.2018.10.042

    Article  Google Scholar 

  193. Yang W, Ma G, Li W, Liao Q (2013) Finger vein verification based on neighbor pattern coding. IEICE Trans Inf Syst E96-D(5):1227–1229. https://doi.org/10.1587/transinf.E96.D.1227

    Article  Google Scholar 

  194. Yang J, Shi Y, Jia G (2017) Finger-vein image matching based on adaptive curve transformation. Pattern Recognit 66:34–43. https://doi.org/10.1016/j.patcog.2017.01.008

    Article  Google Scholar 

  195. Yang W, Wang S, Hu J, Zheng G, Valli C (2019) Security and accuracy of fingerprint-based biometrics: a review. Symmetry. https://doi.org/10.3390/sym11020141

    Article  Google Scholar 

  196. Yang W, Wang S, Hu J, Zheng G, Yang J, Valli C (2019) Securing deep learning based edge finger vein biometrics with binary decision diagram. IEEE Trans Ind Inf 15(7):4244–4253. https://doi.org/10.1109/TII.2019.2900665

    Article  Google Scholar 

  197. Yang M, Wang X, Zeng G, Shen L (2017) Joint and collaborative representation with local adaptive convolution feature for face recognition with single sample per person. Pattern Recognit 66:117–128. https://doi.org/10.1016/j.patcog.2016.12.028

    Article  Google Scholar 

  198. Yang J, Wei J, Shi Y (2019) Accurate ROI localization and hierarchical hyper-sphere model for finger-vein recognition. Neurocomputing 328:171–181. https://doi.org/10.1016/j.neucom.2018.02.098

    Article  Google Scholar 

  199. Yang L, Yang G, Wang K, Liu H, Xi X, Yin Y (2019) Point grouping method for finger vein recognition. IEEE Access 7:28185–28195. https://doi.org/10.1109/ACCESS.2019.2901017

    Article  Google Scholar 

  200. Yang L, Yang G, Xi X, Meng X, Zhang C, Yin Y (2017) Tri-branch vein structure assisted finger vein recognition. IEEE Access 5:21020–21028. https://doi.org/10.1109/ACCESS.2017.2728797

    Article  Google Scholar 

  201. Yang L, Yang G, Yin Y, Xi X (2018) Finger vein recognition with anatomy structure analysis. IEEE Trans Circuits Syst Video Technol 28(8):1892–1905. https://doi.org/10.1109/TCSVT.2017.2684833

    Article  Google Scholar 

  202. Ye L, Wang H, Du M, He Y, Tao L (2019) Weber local descriptor with edge detection and double Gabor orientations for finger vein recognition. In: Tenth international conference on graphics and image processing (ICGIP 2018), vol 11069. International Society for Optics and Photonics, p 110693J

  203. Yin B, Tran L, Li H, Shen X, Liu X (2018) Towards interpretable face recognition, pp 9348–9357

  204. You W, Zhou W, Huang J, Yang F, Liu Y, Chen Z (2019) A bilayer image restoration for finger vein recognition. Neurocomputing 348:54–65. https://doi.org/10.1016/j.neucom.2018.06.085

    Article  Google Scholar 

  205. Yuan X, Gu L, Chen T, Elhoseny M, Wang W (2018) A fast and accurate retina image verification method based on structure similarity. In: Proceedings—IEEE 4th international conference on big data computing service and applications, BigDataService 2018, pp 181–185. https://doi.org/10.1109/BigDataService.2018.00034

  206. Yuan C, Li X, Wu QMJ, Li J, Sun X (2017) Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis. Comput Mater Continua 53(4):357–371

    Google Scholar 

  207. Yuan C, Sun X, Wu QMJ (2019) Difference co-occurrence matrix using BP neural network for fingerprint liveness detection. Soft Comput 23(13):5157–5169. https://doi.org/10.1007/s00500-018-3182-1

    Article  Google Scholar 

  208. Zafar U, Ghafoor M, Zia T, Ahmed G, Latif A, Malik KR, Sharif AM (2019) Face recognition with Bayesian convolutional networks for robust surveillance systems

  209. Zhang M, He Z, Zhang H, Tan T, Sun Z (2019) Toward practical remote iris recognition: a boosting based framework. Neurocomputing 330:238–252. https://doi.org/10.1016/j.neucom.2017.12.053

    Article  Google Scholar 

  210. Zhang Y, Li W, Zhang L, Lu Y (2019) Adaptive gabor convolutional neural networks for finger-vein recognition. In: 2019 International Conference on High Performance Big Data and Intelligent systems, HPBD and IS 2019, (61572458), pp 219–222. https://doi.org/10.1109/HPBDIS.2019.8735471

  211. Zhang Y, Shi D, Zhan X, Cao D, Zhu K, Li Z (2019) Slim-ResCNN: a deep residual convolutional neural network for fingerprint liveness detection. IEEE Access 7:91476–91487. https://doi.org/10.1109/access.2019.2927357

    Article  Google Scholar 

  212. Zhao Z, Kumar A (2017) Towards more accurate iris recognition using deeply learned spatially corresponding features. In: Proceedings of the IEEE international conference on computer vision, 2017 October, pp 3829–3838. https://doi.org/10.1109/ICCV.2017.411

  213. Zhao T, Liu Y, Huo G, Zhu X (2019) A deep learning iris recognition method based on capsule network architecture. IEEE Access 7:49691–49701. https://doi.org/10.1109/ACCESS.2019.2911056

    Article  Google Scholar 

Download references

Acknowledgements

The work of this paper is financially supported by NSF of Guangdong Province (No. 2019A1515010833) and fundamental Research Funds for the Central Universities (No. 2020ZYGXZR089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kashif Shaheed or Aihua Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheed, K., Mao, A., Qureshi, I. et al. A Systematic Review on Physiological-Based Biometric Recognition Systems: Current and Future Trends. Arch Computat Methods Eng 28, 4917–4960 (2021). https://doi.org/10.1007/s11831-021-09560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09560-3

Navigation