Skip to main content
Log in

A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian–Eulerian Schemes on Moving Unstructured Meshes with Topology Change

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this work, we review the family of direct Arbitrary-Lagrangian–Eulerian (ALE) finite vlume (FV) and discontinuous Galerkin (DG) schemes on moving meshes that at each time step are rearranged by explicitly allowing topology changes, in order to guarantee a robust mesh evolution even for high shear flow and very long evolution times. Two different techniques are presented: a local nonconforming approach for dealing with sliding lines, and a global regeneration of Voronoi tessellations for treating general unpredicted movements. Corresponding elements at consecutive times are connected in space-time to construct closed space-time control volumes, whose bottom and top faces may be polygons with a different number of nodes, with different neighbors, and even degenerate space-time sliver elements. Our final ALE FV-DG scheme is obtained by integrating, over these arbitrary shaped space-time control volumes, the space-time conservation formulation of the governing hyperbolic PDE system: so, we directly evolve the solution in time avoiding any remapping stage, being conservative and satisfying the GCL by construction. Arbitrary high order of accuracy in space and time is achieved through a fully discrete one-step predictor–corrector ADER approach, also integrated with well balancing techniques to further improve the accuracy and to maintain exactly even at discrete level many physical invariants of the studied system. A large set of different numerical tests has been carried out in order to check the accuracy and the robustness of our methods for both smooth and discontinuous problems, in particular in the case of vortical flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51

Similar content being viewed by others

References

  1. Balsara D (2004) Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys J Suppl Ser 151:149–184

    Google Scholar 

  2. Balsara D, Dumbser M (2015) Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J Comput Phys 299:687–715

    MathSciNet  MATH  Google Scholar 

  3. Barlow A, Maire P, Rider W, Rieben R, Shashkov M (2016) Arbitrary Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial flows. J Comput Phys 322:603–665

    MathSciNet  MATH  Google Scholar 

  4. Barth T, Frederickson P (1990) Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA paper 90–0013

  5. Barth T, Jespersen D (1989) The design and application of upwind schemes on unstructured meshes. AIAA Pap 89–0366:1–12

    Google Scholar 

  6. Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2):235–394. https://doi.org/10.1016/0045-7825(92)90042-I

    Article  MathSciNet  MATH  Google Scholar 

  7. Berndt M, Breil J, Galera S, Kucharik M, Maire P, Shashkov M (2011) Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian–Eulerian methods. J Comput Phys 230:6664–6687

    MATH  Google Scholar 

  8. Bertoluzza S, Pino SD, Labourasse E (2016) A conservative slide line method for cell-centered semi-Lagrangian and ALE schemes in 2D. ESAIM Math Model Numer Anal 50(2016):187–214

    MathSciNet  MATH  Google Scholar 

  9. Bochev P, Ridzal D, Shashkov M (2013) Fast optimization-based conservative remap of scalar fields through aggregate mass transfer. J Comput Phys 246:37–57

    MathSciNet  MATH  Google Scholar 

  10. Bonazzoli, Gaburro E, Dolean V, Rapetti F (2014) High order edge finite element approximations for the time-harmonic Maxwell’s equations. In: 2014 IEEE conference on antenna measurements & applications (CAMA), Antibes Juan-les-Pins, pp 1–4

  11. Boscheri W (2017) An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics. Int J Numer Methods Fluids 84:76–106

    MathSciNet  Google Scholar 

  12. Boscheri W (2017) An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics. Int J Numer Methods Fluids 84(2):76–106

    MathSciNet  Google Scholar 

  13. Boscheri W (2017) High order direct Arbitrary-Lagrangian–Eulerian (ALE) finite volume schemes for hyperbolic systems on unstructured meshes. Arch Comput Methods Eng 24(4):751–801

    MathSciNet  MATH  Google Scholar 

  14. Boscheri W, Balsara D, Dumbser M (2014) Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J Comput Phys 267:112–138

    MathSciNet  MATH  Google Scholar 

  15. Boscheri W, Dumbser M (2013) Arbitrary-Lagrangian–Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun Comput Phys 14:1174–1206

    MathSciNet  MATH  Google Scholar 

  16. Boscheri W, Dumbser M (2014) A direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. J Comput Phys 275:484–523

    MathSciNet  MATH  Google Scholar 

  17. Boscheri W, Dumbser M (2016) High order accurate direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes. Comput Fluids 136:48–66

    MathSciNet  MATH  Google Scholar 

  18. Boscheri W, Dumbser M (2017) Arbitrary-Lagrangian–Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J Comput Phys 346:449–479

    MathSciNet  MATH  Google Scholar 

  19. Boscheri W, Dumbser M, Balsara D (2014) High-order ADER-WENO ale schemes on unstructured triangular meshes application of several node solvers to hydrodynamics and magnetohydrodynamics. Int J Numer Methods Fluids 76(10):737–778

    MathSciNet  Google Scholar 

  20. Boscheri W, Dumbser M, Balsara D (2014) High order Lagrangian ADER-WENO schemes on unstructured meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics. Int J Numer Methods Fluids 76:737–778

    Google Scholar 

  21. Boscheri W, Dumbser M, Righetti M (2013) A semi-implicit scheme for 3D free surface flows with high-order velocity reconstruction on unstructured voronoi meshes. Int J Numer Methods Fluids 72(6):607–631

    MathSciNet  MATH  Google Scholar 

  22. Boscheri W, Dumbser M, Zanotti O (2015) High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. J Comput Phys 291:120–150

    MathSciNet  MATH  Google Scholar 

  23. Boscheri W, Loubère R (2017) High order accurate direct Arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for non-conservative hyperbolic systems with stiff source terms. Commun Comput Phys 21:271–312

    MathSciNet  MATH  Google Scholar 

  24. Boscheri W, Loubère R, Dumbser M (2015) Direct Arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws. J Comput Phys 292:56–87

    MathSciNet  MATH  Google Scholar 

  25. Boscheri W, Pisaturo GR, Righetti M (2019) High-order divergence-free velocity reconstruction for free surface flows on unstructured voronoi meshes. Int J Numer Methods Fluids 90(6):296–321

    MathSciNet  Google Scholar 

  26. Boscheri W, Semplice M, Dumbser M (2019) Central WENO subcell finite volume limiters for ADER discontinuous Galerkin schemes on fixed and moving unstructured meshes. Commun Comput Phys 25:311–346

    MathSciNet  Google Scholar 

  27. Busto S, Ferrín J, Toro EF, Vázquez-Cendón ME (2018) A projection hybrid high order finite volume/finite element method for incompressible turbulent flows. J Comput Phys 353:169–192

    MathSciNet  MATH  Google Scholar 

  28. Busto S, Chiocchetti S, Dumbser M, Gaburro E, Peshkov I (2020) High order ADER schemes for continuum mechanics. Front Phys. https://doi.org/10.3389/fphy.2020.00032

    Article  Google Scholar 

  29. Caramana E (2009) The implementation of slide lines as a combined force and velocity boundary condition. J Comput Phys 228:3911–3916

    MATH  Google Scholar 

  30. Caramana E, Burton D, Shashkov M, Whalen P (1998) The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J Comput Phys 146:227–262

    MathSciNet  MATH  Google Scholar 

  31. Carré G, Pino SD, Després B, Labourasse E (2009) A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J Comput Phys 228:5160–5183

    MathSciNet  MATH  Google Scholar 

  32. Castro M, Gallardo J, López J, Parés C (2008) Well-balanced high order extensions of Godunov’s method for semilinear balance laws. SIAM J Numer Anal 46:1012–1039

    MathSciNet  MATH  Google Scholar 

  33. Castro M, Gallardo J, Marquina A (2016) Approximate Osher–Solomon schemes for hyperbolic systems. Appl Math Comput 272:347–368

    MathSciNet  MATH  Google Scholar 

  34. Castro M, Gallardo J, Parés C (2006) High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math Comput 75:1103–1134

    MathSciNet  MATH  Google Scholar 

  35. Castro M, Pardo A, Parés C (2007) Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math Models Methods Appl Sci 17(12):2055–2113

    MathSciNet  MATH  Google Scholar 

  36. Castro M, Pardo A, Parés C, Toro E (2010) On some fast well-balanced first order solvers for nonconservative systems. Math Comput 79(271):1427–1472

    MathSciNet  MATH  Google Scholar 

  37. Castro MJ, Fernández E, Ferriero A, García JA, Parés C (2009) High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems. J Sci Comput 39:67–114

    MathSciNet  MATH  Google Scholar 

  38. Castro Díaz MJ, Fernández-Nieto ED (2012) A class of computationally fast first order finite volume solvers: PVM methods. SIAM J Sci Comput 34(4):A2173–A2196

    MathSciNet  MATH  Google Scholar 

  39. Cheng J, Shu C (2007) A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J Comput Phys 227:1567–1596

    MathSciNet  MATH  Google Scholar 

  40. Cheng J, Shu C (2010) A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry. J Comput Phys 229:7191–7206

    MathSciNet  MATH  Google Scholar 

  41. Clain S, Diot S, Loubère R (2011) A high-order finite volume method for systems of conservation laws-multi-dimensional optimal order detection (MOOD). J Comput Phys 230(10):4028–4050. https://doi.org/10.1016/j.jcp.2011.02.026

    Article  MathSciNet  MATH  Google Scholar 

  42. Clair G, Després B, Labourasse E (2013) A new method to introduce constraints in cell-centered Lagrangian schemes. Comput Methods Appl Mech Eng 261–262:56–65

    MathSciNet  MATH  Google Scholar 

  43. Clair G, Després B, Labourasse E (2014) A one-mesh method for the cell-centered discretization of sliding. Comput Methods Appl Mech Eng 269:315–333

    MathSciNet  MATH  Google Scholar 

  44. Claisse A, Després B, Labourasse E, Ledoux F (2012) A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes. J Comput Phys 231:4324–4354

    MathSciNet  MATH  Google Scholar 

  45. Cravero I, Puppo G, Semplice M, Visconti G (2018) Cweno: uniformly accurate reconstructions for balance laws. Math Comput 87(312):1689–1719

    MathSciNet  MATH  Google Scholar 

  46. Cremonesi M, Frangi A, Perego U (2010) A lagrangian finite element approach for the analysis of fluid-structure interaction problems. Int J Numer Methods Eng 84(5):610–630

    MathSciNet  MATH  Google Scholar 

  47. Cremonesi M, Frangi A, Perego U (2011) A lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput Struct 89(11–12):1086–1093

    Google Scholar 

  48. Cremonesi M, Meduri S, Perego U, Frangi A (2017) An explicit Lagrangian finite element method for free-surface weakly compressible flows. Comput Part Mech 4(3):357–369

    Google Scholar 

  49. Cavalcanti JR, Dumbser DdMM M, Junior CF (2015) A conservative finite volume scheme with time-accurate local time stepping for scalar transport on unstructured grids. Adv Water Resour 86:217–230

    Google Scholar 

  50. Dal Maso G, LeFloch P, Murat F (1995) Definition and weak stability of nonconservative products. J Math Pures Appl 74:483–548

    MathSciNet  MATH  Google Scholar 

  51. Dedner A, Kemm F, Kröner D, Munz CD, Schnitzer T, Wesenberg M (2002) Hyperbolic divergence cleaning for the MHD equations. J Comput Phys 175:645–673

    MathSciNet  MATH  Google Scholar 

  52. Després B (2017) Numerical methods for Eulerian and Lagrangian conservation laws. Birkhäuser, Boston

    MATH  Google Scholar 

  53. Diot S, Clain S, Loubère R (2012) Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput Fluids 64:43–63. https://doi.org/10.1016/j.compfluid.2012.05.004

    Article  MathSciNet  MATH  Google Scholar 

  54. Diot S, Loubère R, Clain S (2013) The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems. Int J Numer Methods Fluids 73:362–392

    MATH  Google Scholar 

  55. Dobrev V, Ellis T, Kolev T, Rieben R (2011) Curvilinear finite elements for lagrangian hydrodynamics. Int J Numer Methods Fluids 65:1295–1310

    MathSciNet  MATH  Google Scholar 

  56. Dobrev V, Ellis T, Kolev T, Rieben R (2013) High-order curvilinear finite elements for axisymmetric lagrangian hydrodynamics. Comput Fluids 83:58–69

    MathSciNet  MATH  Google Scholar 

  57. Dobrev V, Kolev T, Rieben R (2012) High-order curvilinear finite element methods for lagrangian hydrodynamics. SIAM J Sci Comput 34(5):B606–B641. https://doi.org/10.1137/120864672

    Article  MathSciNet  MATH  Google Scholar 

  58. Dumbser M (2014) Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput Methods Appl Mech Eng 280:57–83

    MathSciNet  MATH  Google Scholar 

  59. Dumbser M, Balsara D (2016) A new, efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J Comput Phys 304:275–319

    MathSciNet  MATH  Google Scholar 

  60. Dumbser M, Balsara D, Toro E, Munz C (2008) A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes. J Comput Phys 227:8209–8253

    MathSciNet  MATH  Google Scholar 

  61. Dumbser M, Boscheri W (2013) High-order unstructured Lagrangian one-step weno finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows. Comput Fluids 86:405–432

    MathSciNet  MATH  Google Scholar 

  62. Dumbser M, Boscheri W, Semplice M, Russo G (2017) Central weighted eno schemes for hyperbolic conservation laws on fixed and moving unstructured meshes. SIAM J Sci Comput 39(6):A2564–A2591

    MathSciNet  MATH  Google Scholar 

  63. Dumbser M, Enaux C, Toro E (2008) Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J Comput Phys 227:3971–4001

    MathSciNet  MATH  Google Scholar 

  64. Dumbser M, Käser M (2007) Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J Comput Phys 221:693–723

    MathSciNet  MATH  Google Scholar 

  65. Dumbser M, Käser M, Titarev V, Toro E (2007) Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J Comput Phys 226:204–243

    MathSciNet  MATH  Google Scholar 

  66. Dumbser M, Loubère R (2016) A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. J Comput Phys 319:163–199

    MathSciNet  MATH  Google Scholar 

  67. Dumbser M, Toro EF (2011) On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. Commun Comput Phys 10:635–671

    MathSciNet  MATH  Google Scholar 

  68. Dumbser M, Toro EF (2011) A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J Sci Comput 48:70–88

    MathSciNet  MATH  Google Scholar 

  69. Dumbser M, Zanotti O, Loubère R, Diot S (2014) A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J Comput Phys 278:47–75

    MathSciNet  MATH  Google Scholar 

  70. Dumbser M, Fambri F, Gaburro E, Reinarz A (2020) On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations. J Comput Phys 404:109088

    MathSciNet  MATH  Google Scholar 

  71. Einfeldt B, Munz CD, Roe PL, Sjögreen B (1991) On Godunov-type methods near low densities. J Comput Phys 92:273–295

    MathSciNet  MATH  Google Scholar 

  72. Fambri F, Dumbser M, Köppel S, Rezzolla L, Zanotti O (2018) ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics. Mon Not R Astron Soc. arXiv:abs/1801.02839

  73. Fambri F, Dumbser M, Zanotti O (2017) Space-time adaptive ADER-DG schemes for dissipative flows: compressible navier-stokes and resistive mhd equations. Comput Phys Commun 220:297–318

    MathSciNet  Google Scholar 

  74. Gaburro E (2018) Well balanced Arbitrary-Lagrangian–Eulerian finite volume schemes on moving nonconforming meshes for non-conservative hyperbolic systems. Ph.D. thesis, University of Trento

  75. Gaburro E, Boscheri W, Chiocchetti S, Klingenberg C, Springel V, Dumbser M (2019) High order direct Arbitrary-Lagrangian–Eulerian schemes on moving Voronoi meshes with topology changes. Journal of Computational Physics. In press. https://doi.org/10.1016/j.jcp.2019.109167

  76. Gaburro E, Castro MJ, Dumbser M (2018) Well-balanced Arbitrary-Lagrangian–Eulerian finite volume schemes on moving nonconforming meshes for the euler equations of gas dynamics with gravity. Mon Not R Astron Soc 477(2):2251–2275

    Google Scholar 

  77. Gaburro E, Castro MJ, Dumbser M (2018) A well balanced diffuse interface method for complex nonhydrostatic free surface flows. Comput Fluids 175:180–198

    MathSciNet  MATH  Google Scholar 

  78. Gaburro E, Dumbser M, Castro MJ (2017) Direct Arbitrary-Lagrangian–Eulerian finite volume schemes on moving nonconforming unstructured meshes. Comput Fluids 159:254–275

    MathSciNet  MATH  Google Scholar 

  79. Gaburro E, Dumbser M, Castro MJ (2018) Reprint of: direct Arbitrary-Lagrangian–Eulerian finite volume schemes on moving nonconforming unstructured meshes. Comput Fluids

  80. Galera S, Maire P, Breil J (2010) A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. J Comput Phys 229:5755–5787

    MathSciNet  MATH  Google Scholar 

  81. Godunov S (1959) Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Math USSR Sbornik 47:271–306

    MATH  Google Scholar 

  82. Gosse L (2000) A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput Math Appl 39(9):135–159

    MathSciNet  MATH  Google Scholar 

  83. Gosse L (2001) A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math Models Methods Appl Sci 11(02):339–365

    MathSciNet  MATH  Google Scholar 

  84. Greenberg J, Leroux A, Baraille R, Noussair A (1997) Analysis and approximation of conservation laws with source terms. SIAM J Numer Anal 34(5):1980–2007

    MathSciNet  MATH  Google Scholar 

  85. Greenberg JM, Leroux AY (1996) A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J Numer Anal 33(1):1–16

    MathSciNet  Google Scholar 

  86. Harten A, Engquist B, Osher S, Chakravarthy S (1987) Uniformly high order accurate essentially non-oscillatory schemes III. J Comput Phys 71:231–303

    MathSciNet  MATH  Google Scholar 

  87. Harten A, Engquist B, Osher S, Chakravarthy S (1987) Uniformly high order essentially non-oscillatory schemes. III. J Comput Phys 71:231–303

    MathSciNet  MATH  Google Scholar 

  88. Hidalgo A, Dumbser M (2011) Ader schemes for nonlinear systems of stiff advection–diffusion–reaction equations. J Sci Comput 48(1–3):173–189

    MathSciNet  MATH  Google Scholar 

  89. Hu C, Shu C (1999) A high-order weno finite difference scheme for the equations of ideal magnetohydrodynamics. J Comput Phys 150:561–594

    MathSciNet  Google Scholar 

  90. Hu C, Shu C (1999) Weighted essentially non-oscillatory schemes on triangular meshes. J Comput Phys 150(1):97–127

    MathSciNet  MATH  Google Scholar 

  91. Idelsohn S, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198:2750–2767

    MATH  Google Scholar 

  92. Idelsohn SR, Oñate E, Pin FD (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61:964–984

    MathSciNet  MATH  Google Scholar 

  93. Jackson H (2017) On the eigenvalues of the ader-weno Galerkin predictor. J Comput Phys 333:409–413

    MathSciNet  MATH  Google Scholar 

  94. Käppeli R, Mishra S (2016) A well-balanced finite volume scheme for the euler equations with gravitation. Astron Astrophys 587:A94

    Google Scholar 

  95. Käser M, Iske A (2005) ADER schemes on adaptive triangular meshes for scalar conservation laws. J Comput Phys 205:486–508

    MathSciNet  MATH  Google Scholar 

  96. Kemm F, Gaburro E, Thein F, Dumbser M, (2020) A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model. arXiv preprint arXiv:2001.10326

  97. Knupp P (2000) Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated quantities. Part II—a framework for volume mesh optimization and the condition number of the jacobian matrix. Int J Numer Methods Eng 48:1165–1185

    MATH  Google Scholar 

  98. Kucharik M, Breil J, Galera S, Maire P, Berndt M, Shashkov M (2011) Hybrid remap for multi-material ALE. Comput Fluids 46:293–297

    MATH  Google Scholar 

  99. Kucharik M, Loubère R, Bednàrik L, Liska R (2013) Enhancement of Lagrangian slide lines as a combined force and velocity boundary condition. Comput Fluids 83:3–14

    MathSciNet  MATH  Google Scholar 

  100. Kucharik M, Shashkov M (2012) One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian–Eulerian methods. J Comput Phys 231:2851–2864

    MathSciNet  MATH  Google Scholar 

  101. Larese A, Rossi R, Oñate E, Idelsohn S (2008) Validation of the particle finite element method (PFEM) for simulation of the free-surface flows. Eng Comput 25:385–425

    MATH  Google Scholar 

  102. LeVeque RJ (1998) Balancing source terms and flux gradients in high-resolution godunov methods: the quasi-steady wave-propagation algorithm. J Comput Phys 146(1):346–365

    MathSciNet  MATH  Google Scholar 

  103. Levy D, Puppo G, Russo G (1999) Central WENO schemes for hyperbolic systems of conservation laws. Math Model Numer Anal 33(3):547–571

    MathSciNet  MATH  Google Scholar 

  104. Levy D, Puppo G, Russo G (2000) A third order central WENO scheme for 2D conservation laws. Appl Numer Math 33:415–421

    MathSciNet  MATH  Google Scholar 

  105. Levy D, Puppo G, Russo G (2002) A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws. SIAM J Sci Comput 24:480–506

    MathSciNet  MATH  Google Scholar 

  106. Li Z, Yu X, Jia Z (2014) The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions. Comput Fluids 96:152–164

    MathSciNet  MATH  Google Scholar 

  107. Liska R, Váchal MSP, Wendroff B (2011) Synchronized flux corrected remapping for ALE methods. Comput Fluids 46:312–317

    MathSciNet  MATH  Google Scholar 

  108. Liu W, Cheng J, Shu C (2009) High order conservative Lagrangian schemes with Lax–Wendroff type time discretization for the compressible Euler equations. J Comput Phys 228:8872–8891

    MathSciNet  MATH  Google Scholar 

  109. Loubere R, Dumbser M, Diot S (2014) A new family of high order unstructured mood and ader finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun Comput Phys 16(3):718–763

    MathSciNet  MATH  Google Scholar 

  110. Loubère R, Maire P, Váchal P (2010) A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver. Procedia Comput Sci 1:1931–1939

    MATH  Google Scholar 

  111. Loubère R, Maire P, Váchal P (2013) 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity. Int J Numer Methods Fluids 72:22–42

    MathSciNet  MATH  Google Scholar 

  112. Loubère R, Maire PH, Váchal P (2010) Staggered Lagrangian hydrodynamics based on cell-centered Riemann solver. Commun Comput Phys 10(4):940–978

    MATH  Google Scholar 

  113. Ma R, Chang X, Zhang L, He X, Li M (2015) On the geometric conservation law for unsteady flow simulations on moving mesh. Procedia Eng 126:639–644

    Google Scholar 

  114. Maire P (2009) A high-order cell-centered lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J Comput Phys 228:2391–2425

    MathSciNet  MATH  Google Scholar 

  115. Maire P (2011) A high-order one-step sub-cell force-based discretization for cell-centered lagrangian hydrodynamics on polygonal grids. Comput Fluids 46(1):341–347

    MathSciNet  MATH  Google Scholar 

  116. Maire P (2011) A unified sub-cell force-based discretization for cell-centered lagrangian hydrodynamics on polygonal grids. Int J Numer Methods Fluids 65:1281–1294

    MathSciNet  MATH  Google Scholar 

  117. Maire P, Nkonga B (2009) Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics. J Comput Phys 228:799–821

    MathSciNet  MATH  Google Scholar 

  118. Maso GD, LeFloch P, Murat F (1995) Definition and weak stability of nonconservative products. J Math Pures Appl 74:483–548

    MathSciNet  MATH  Google Scholar 

  119. Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C, Ferrari A (2007) Pluto: a numerical code for computational astrophysics. Astrophys J Suppl Ser 170(1):228

    Google Scholar 

  120. Mignone A, Zanni C, Tzeferacos P, Van Straalen B, Colella P, Bodo G (2011) The pluto code for adaptive mesh computations in astrophysical fluid dynamics. Astrophys J Suppl Ser 198(1):7

    Google Scholar 

  121. Munz C (1994) On Godunov-type schemes for Lagrangian gas dynamics. SIAM J Numer Anal 31:17–42

    MathSciNet  MATH  Google Scholar 

  122. Oñate E, Celigueta M, Idelsohn S, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. J Comput Mech 48:307–318

    MathSciNet  MATH  Google Scholar 

  123. Oñate E, Idelsohn S, Celigueta M, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free-surface flows. Comput Methods Appl Mech Eng 197:1777–1800

    MathSciNet  MATH  Google Scholar 

  124. Ortega AL, Scovazzi G (2011) A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian–Eulerian computations with nodal finite elements. J Comput Phys 230:6709–6741

    MathSciNet  MATH  Google Scholar 

  125. Osher S, Solomon F (1982) Upwind difference schemes for hyperbolic conservation laws. Math Comput 38:339–374

    MathSciNet  MATH  Google Scholar 

  126. Pakmor R, Marinacci F, Springel V (2014) Magnetic fields in cosmological simulations of disk galaxies. Astrophys J Lett 783(1):L20

    Google Scholar 

  127. Pakmor R, Springel V, Bauer A, Mocz P, Munoz DJ, Ohlmann ST, Schaal K, Zhu C (2015) Improving the convergence properties of the moving-mesh code arepo. Mon Not R Astron Soc 455(1):1134–1143

    Google Scholar 

  128. Parés C (2006) Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J Numer Anal 44:300–321

    MathSciNet  MATH  Google Scholar 

  129. Pin FD, Idelsohn SR, Oñate E, Aubry R (2007) The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid–object interactions. Comput Fluids 36:27–38

    MATH  Google Scholar 

  130. Pino SD (2010) A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates. Comptes Rendus de l’Académie des Sciences Series I Mathematics 348:1027–1032

    MathSciNet  MATH  Google Scholar 

  131. Qiu J, Shu CW (2005) Hermite weno schemes and their application as limiters for Runge–Kutta discontinuous galerkin method II: two dimensional case. Comput Fluids 34(6):642–663

    MathSciNet  MATH  Google Scholar 

  132. Re B, Dobrzynski C, Guardone A (2017) An interpolation-free ALE scheme for unsteady inviscid flows computations with large boundary displacements over three-dimensional adaptive grids. J Comput Phys 340:26–54

    MathSciNet  MATH  Google Scholar 

  133. Reed W, Hill T (1973) Triangular mesh methods for neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory

  134. Rusanov VV (1961) Calculation of interaction of non-steady shock waves with obstacles. J Comput Math Phys USSR 1:267–279

    MathSciNet  Google Scholar 

  135. Sambasivan S, Shashkov M, Burton D (2013) A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids. Int J Numer Methods Fluids 72:770–810

    MathSciNet  MATH  Google Scholar 

  136. Schwartzkopff T, Munz C, Toro E (2002) ADER: a high order approach for linear hyperbolic systems in 2D. J Sci Comput 17(1–4):231–240

    MathSciNet  MATH  Google Scholar 

  137. Scovazzi G (2012) Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach. J Comput Phys 231:8029–8069

    MathSciNet  Google Scholar 

  138. Sedov L (1959) Similarity and dimensional methods in mechanics. Academic Press, New York

    MATH  Google Scholar 

  139. Semplice M, Coco A, Russo G (2016) Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J Sci Comput 66(2):692–724

    MathSciNet  MATH  Google Scholar 

  140. Springel V (2010) E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon Not R Astron Soc 401:791–851

    Google Scholar 

  141. Springel V (2010) Moving-mesh hydrodynamics with the arepo code. Proc Int Astron Union 6(S270):203–206

    Google Scholar 

  142. Stroud A (1971) Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  143. Tavelli M, Boscheri W A high order parallel Eulerian–Lagrangian algorithm for advection-diffusion problems on unstructured meshes. Int J Numer Methods Fluids

  144. Titarev V, Toro E (2002) ADER: arbitrary high order Godunov approach. J Sci Comput 17(1–4):609–618

    MathSciNet  MATH  Google Scholar 

  145. Titarev V, Toro E (2005) ADER schemes for three-dimensional nonlinear hyperbolic systems. J Comput Phys 204:715–736

    MathSciNet  MATH  Google Scholar 

  146. Toro E (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  147. Toro E, Titarev V (2002) Solution of the generalized Riemann problem for advection-reaction equations. Proc R Soc Lond 458:271–281

    MathSciNet  MATH  Google Scholar 

  148. Toro EF, Titarev VA (2006) Derivative Riemann solvers for systems of conservation laws and ADER methods. J Comput Phys 212(1):150–165

    MathSciNet  MATH  Google Scholar 

  149. Vilar F (2012) Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Comput Fluids 64:64–73

    MathSciNet  MATH  Google Scholar 

  150. Vilar F, Maire P, Abgrall R (2010) Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. Comput Fluids 46(1):498–604

    MathSciNet  MATH  Google Scholar 

  151. Vilar F, Maire P, Abgrall R (2014) A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J Comput Phys 276:188–234

    MathSciNet  MATH  Google Scholar 

  152. von Neumann J, Richtmyer R (1950) A method for the calculation of hydrodynamics shocks. J Appl Phys 21:232–237

    MathSciNet  MATH  Google Scholar 

  153. van Leer B (1974) Towards the ultimate conservative difference scheme II: monotonicity and conservation combined in a second order scheme. J Comput Phys 14:361–370

    MATH  Google Scholar 

  154. van Leer B (1979) Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’s method. J Comput Phys 32:101–136

    MATH  Google Scholar 

  155. Wilkins ML (1964) Calculation of elastic-plastic flow. Methods Comput Phys 3

  156. Winslow AM (1997) Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh. J Comput Phys 135(2):128–138

    MathSciNet  MATH  Google Scholar 

  157. Zanotti O, Fambri F, Dumbser M, Hidalgo A (2015) Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput Fluids 118:204–224

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research presented in this paper has been partially financed by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013) with the research project STiMulUs, ERC Grant Agreement No. 278267. The author has also been supported by a national mobility grant for young researchers in Italy, funded by GNCS-INdAM, and by the UniTN Starting Grant, funded by the University of Trento in Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Gaburro.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaburro, E. A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian–Eulerian Schemes on Moving Unstructured Meshes with Topology Change. Arch Computat Methods Eng 28, 1249–1321 (2021). https://doi.org/10.1007/s11831-020-09411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09411-7

Navigation