Skip to main content
Log in

Review of Ear Biometrics

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

As one of the most important biometrics, ear biometrics is getting more and more attention. Ear recognition has unique advantages and can make identification more secure and reliable together with other biometrics (e.g. face and fingerprint). Therefore, we investigate related information about ear recognition and classify the entire process of ear recognition, including detection, preprocessing, unimodal recognition including feature extraction and decision of classification or matching, and multimodal recognition based on inter-level and intra-level fusion. Unimodal and multimodal recognition are proposed comprehensively. In addition, inter-level and intra-level fusion are divided into different fusion ways. At the same time, we compare recognition results under the same dataset and analyze the difficulty of some datasets. In the end, challenges and outlook of ear recognition are also mentioned to expect to provide readers with some help about future directions and problems that should be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Omara I et al (2016) A novel geometric feature extraction method for ear recognition. Expert Syst Appl 65:127–135. https://doi.org/10.1016/j.eswa.2016.08.035

    Article  Google Scholar 

  2. Emersic Z, Struc V, Peer P (2017) Ear recognition: more than a survey. Neurocomputing 255:26–39. https://doi.org/10.1016/j.neucom.2016.08.139

    Article  Google Scholar 

  3. Annapurani K, Sadiq M, Malathy C (2015) Fusion of shape of the ear and tragus—a unique feature extraction method for ear authentication system. Expert Syst Appl 42(1):649–656. https://doi.org/10.1016/j.eswa.2014.08.009

    Article  Google Scholar 

  4. Selvam R, Rao K (2009) Pattern extraction methods for ear biometrics—a survey. In: 2009 world congress on nature & biologically inspired computing (NaBIC), Coimbatore, pp 16571660. https://doi.org/10.1109/nabic.2009.5393639

  5. Iannarelli A (1964) The Iannarelli system of ear identification. Foundation Press, St. Paul

    Google Scholar 

  6. Unar J, Seng W, Abbasi A (2014) A review of biometric technology along with trends and prospects. Pattern Recognit 47(8):2673–2688. https://doi.org/10.1016/j.patcog.2014.01.016

    Article  Google Scholar 

  7. Pflug A, Busch C (2012) Ear biometrics: a survey of detection, feature extraction and recognition methods. IET Biom 1(2):114–129. https://doi.org/10.1049/iet-bmt.2011.0003

    Article  Google Scholar 

  8. Abaza A et al (2013) A survey on ear biometrics. ACM Comput Surv (CSUR) 45(2):1–35. https://doi.org/10.1145/2431211.2431221

    Article  Google Scholar 

  9. Athawale U, Gupta M (2018) Survey on recent ear biometric recognition techniques. Int J Comput Sci Eng 6(6):1208–1211. https://doi.org/10.26438/ijcse/v6i6.12081211

    Article  Google Scholar 

  10. Berg S (1970) Sherlock Holmes: father of scientific crime detection. J Crim Law Criminol Police Sci 61(3):446–452. https://doi.org/10.2307/1141973

    Article  Google Scholar 

  11. Lugt C (2000) Ear prints. Encycl Forensic Sci 117(3):669–680. https://doi.org/10.1006/rwfs.2000.0497

    Article  Google Scholar 

  12. Kasprzak J (2005) Forensic otoscopy—new method of human identification. Jurisprudencija 66(58):106–109

    Google Scholar 

  13. Islam S et al (2011) Efficient detection and recognition of 3D ears. Int J Comput Vis 95(1):52–73. https://doi.org/10.1007/s11263-011-0436-0

    Article  Google Scholar 

  14. Zhang Y et al (2017) 3D ear normalization and recognition based on local surface variation. Appl Sci Basel. https://doi.org/10.3390/app7010104

    Article  Google Scholar 

  15. Zhu Q, Mu Z (2018) Local and holistic feature fusion for occlusion-robust 3D ear recognition. Symmetry-Basel. https://doi.org/10.3390/sym10110565

    Article  Google Scholar 

  16. Zavar B, Nixon M (2011) On guided model-based analysis for ear biometrics. Comput Vis Image Underst 115(4):487–502. https://doi.org/10.1016/j.cviu.2010.11.014

    Article  Google Scholar 

  17. Cummings A, Nixon M, Carter J (2011) The image ray transform for structural feature detection. Pattern Recognit Lett 32(15):2053–2060. https://doi.org/10.1016/j.patrec.2011.08.020

    Article  Google Scholar 

  18. Yuan L, Mu Z (2012) Ear recognition based on local information fusion. Pattern Recognit Lett 33(2):182–190. https://doi.org/10.1016/j.patrec.2011.09.041

    Article  Google Scholar 

  19. Galdámez P, Arrieta A, Ramón M (2017) A brief approach to the ear recognition process. Springer, Berlin. https://doi.org/10.1007/978-3-319-07593-8_54

    Book  Google Scholar 

  20. Jamil N, AlMisreb A, Halin A (2014) Illumination-invariant ear authentication. Proc Comput Sci 42:271–278. https://doi.org/10.1016/j.procs.2014.11.062

    Article  Google Scholar 

  21. Zhang B et al (2014) Robust ear recognition via nonnegative sparse representation of Gabor orientation information. Sci World J. https://doi.org/10.1155/2014/131605

    Article  Google Scholar 

  22. Zeng H et al. (2014) Local feature descriptor based rapid 3D ear recognition. In: Proceedings of the 33rd Chinese control conference, Nanjing, pp 4942–4945. https://doi.org/10.1109/chicc.2014.6895778

  23. Chowdhury M, Islam R, Gao J (2017) Robust ear biometric recognition using neural network. In: 2017 12th IEEE conference on industrial electronics and applications (ICIEA), Siem Reap, Cambodia, pp 1855–1859. https://doi.org/10.1109/iciea.2017.8283140

  24. Tharewal S, Gite H, Kale K (2017) 3D face & 3D ear recognition: process and techniques. In: 2017 international conference on current trends in computer, electrical, electronics and communication (CTCEEC), Mysore, India, pp 1044–1049. https://doi.org/10.1109/ctceec.2017.8454970

  25. Islam S et al (2013) Multibiometric human recognition using 3D ear and face features. Pattern Recognit 46(3):613–627. https://doi.org/10.1016/j.patcog.2012.09.016

    Article  Google Scholar 

  26. Yuan L, Mu Z (2014) Ear recognition based on Gabor features and KFDA. Sci World J. https://doi.org/10.1155/2014/702076

    Article  Google Scholar 

  27. Yuan L, Zhang F (2009) Ear detection based on improved AdaBoost algorithm. In: 2009 international conference on machine learning and cybernetics, Hebei, pp 2414–2417. https://doi.org/10.1109/icmlc.2009.5212166

  28. Chen L et al (2015) Ear recognition from one sample per person. Plos One 10(5):e0129505. https://doi.org/10.1371/journal.pone.0129505

    Article  Google Scholar 

  29. Abaza A, Bourlai T (2013) On ear-based human identification in the mid-wave infrared spectrum. Image Vis Comput 31(9):640–648. https://doi.org/10.1016/j.imavis.2013.06.001

    Article  Google Scholar 

  30. Galdamez P, Arrieta A, Ramon M (2016) A small look at the ear recognition process using a hybrid approach. J Appl Log 17:4–13. https://doi.org/10.1016/j.jal.2015.09.004

    Article  MathSciNet  Google Scholar 

  31. Galdamez P, Raveane W, Arrieta A (2017) A brief review of the ear recognition process using deep neural networks. J Appl Log 24:62–70. https://doi.org/10.1016/j.jal.2016.11.014

    Article  MathSciNet  Google Scholar 

  32. Oravec M et al. (2016) Mobile ear recognition application. In: 2016 international conference on systems, signals and image processing (IWSSIP), Bratislava, pp 1–4. https://doi.org/10.1109/iwssip.2016.7502719

  33. Kumar A, Wu C (2012) Automated human identification using ear imaging. Pattern Recognit 45(3):956–968. https://doi.org/10.1016/j.patcog.2011.06.005

    Article  Google Scholar 

  34. Kumar A, Chan T (2013) Robust ear identification using sparse representation of local texture descriptors. Pattern Recognit 46(1):73–85. https://doi.org/10.1016/j.patcog.2012.06.020

    Article  Google Scholar 

  35. Chan T, Kumar A (2012) Reliable ear identification using 2-D quadrature filters. Pattern Recognit Lett 33(14):1870–1881. https://doi.org/10.1016/j.patrec.2011.11.013

    Article  Google Scholar 

  36. Anwar A, Ghany K, Elmahdy H (2015) Human ear recognition using geometrical features extraction. Proc Comput Sci 65:529–537. https://doi.org/10.1016/j.procs.2015.09.126

    Article  Google Scholar 

  37. Sun X et al (2014) 3D ear recognition using local salience and principal manifold. Gr Models 76(5):402–412. https://doi.org/10.1016/j.gmod.2014.03.003

    Article  Google Scholar 

  38. Zhou J, Cadavid S, Mottaleb M (2012) An efficient 3-D ear recognition system employing local and holistic features. IEEE Trans Inf Forensics Secur 7(3):978–991. https://doi.org/10.1109/TIFS.2012.2189005

    Article  Google Scholar 

  39. Ali A, Islam M (2013) A biometric based: 3-D ear recognition system combining local and holistic features. Int J Mod Educ Comput Sci 5(11):36. https://doi.org/10.5815/ijmecs.2013.11.05

    Article  Google Scholar 

  40. Ziedan I, Farouk H, Mohamed S (2017) Human ear recognition using voting of statistical and geometrical techniques. In: 2017 international conference on advanced control circuits systems (ACCS) systems & 2017 international conference on new paradigms in electronics & information technology (PEIT), Alexandria, pp 105–111. https://doi.org/10.1109/accs-peit.2017.8303027

  41. Alagarsamy S, Kondappan S (2018) Ear recognition system using adaptive approach Runge-Kutta (AARK) threshold segmentation with ANFIS classification. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3805-6

    Article  Google Scholar 

  42. Liu Y et al (2016) Online 3D ear recognition by combining global and local features. Plos One 11(12):e0166204. https://doi.org/10.1371/journal.pone.0166204

    Article  Google Scholar 

  43. Kumar V, Srinivasan B (2012) Ear biometrics in human identification system. Int J Mod Educ Comput Sci 6(2):41

    Google Scholar 

  44. Sarangi P, Mishra B, Dehuri S (2018) Fusion of PHOG and LDP local descriptors for kernel-based ear biometric recognition. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-6489-0

    Article  Google Scholar 

  45. Rani S, Jangilla S (2016) Ear recognition using bilinear probabilistic principal component analysis and sparse classifier. In: 2016 IEEE region 10 conference (TENCON), Singapore, pp 22–25. https://doi.org/10.1109/tencon.2016.7848151

  46. Murukesh C, Parivazhagan A, Thanushkodi K (2012) A novel ear recognition process using appearance shape model, fisher linear discriminant analysis and contourlet transform. Proc Eng 38:771–778. https://doi.org/10.1016/j.proeng.2012.06.097

    Article  Google Scholar 

  47. Prakash S, Gupta P (2013) An efficient ear recognition technique invariant to illumination and pose. Telecommun Syst 52(3):1435–1448. https://doi.org/10.1007/s11235-011-9621-2

    Article  Google Scholar 

  48. Ghoualmi L, Draa A, Chikhi S (2016) An ear biometric system based on artificial bees and the scale invariant feature transform. Expert Syst Appl 57:49–61. https://doi.org/10.1016/j.eswa.2016.03.004

    Article  Google Scholar 

  49. Gu D, Nguyen M, Yan W (2016) Cross models for twin recognition. Int J Digit Crime Forensics (IJDCF) 8(4):26–36. https://doi.org/10.4018/IJDCF.2016100103

    Article  Google Scholar 

  50. Taertulakarn S et al. (2016) The preliminary investigation of ear recognition using hybrid technique. In: 2016 9th biomedical engineering international conference (BMEiCON), Laung Prabang, Laos, pp 1–4. https://doi.org/10.1109/bmeicon.2016.7859620

  51. Zarachoff M, Sheikh-Akbari A, Monekosso D (2018) Application of single image super-resolution in human ear recognition using eigenvalues. In: 2018 IEEE international conference on imaging systems and techniques (IST), Krakow, Poland, pp 1–6. https://doi.org/10.1109/ist.2018.8577134

  52. Cho S (2013) 3D ear shape reconstruction and recognition for biometric applications. Signal Image Video Process 7(4):609–618. https://doi.org/10.1007/s11760-013-0481-y

    Article  Google Scholar 

  53. Banerjee S, Chatterjee A (2016) Image set based ear recognition using novel dictionary learning and classification scheme. Eng Appl Artif Intell 55:37–46. https://doi.org/10.1016/j.engappai.2016.05.005

    Article  Google Scholar 

  54. Chen L, Mu Z (2016) Partial data ear recognition from one sample per person. IEEE Trans Hum Mach Syst 46(6):799–809. https://doi.org/10.1109/THMS.2016.2598763

    Article  Google Scholar 

  55. Prakash S, Gupta P (2014) Human recognition using 3D ear images. Neurocomputing 140:317–325. https://doi.org/10.1016/j.neucom.2014.03.007

    Article  Google Scholar 

  56. Claes P et al (2015) An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization. J Anat 226(1):60–72. https://doi.org/10.1111/joa.12252

    Article  Google Scholar 

  57. Vadhwani B et al (2017) Performance of Gabor mean feature extraction techniques for ear biometrics recognition system. Int J Comput Appl 168(12):1–2. https://doi.org/10.5120/ijca2017913797

    Article  Google Scholar 

  58. Minamidani T, Sai H, Watabe D (2017) Improving ear recognition robustness from single-view-based images rotated in depth for forensic observations. In: 2017 international conference on biometrics and kansei engineering (ICBAKE), Kyoto, Japan, pp 90–93. https://doi.org/10.1109/icbake.2017.8090643

  59. Othman R, Alizadeh F, Sutherland A (2018) A novel approach for occluded ear recognition based on shape context. In: 2018 international conference on advanced science and engineering (ICOASE), Duhok, Iraq, pp 93–98. https://doi.org/10.1109/icoase.2018.8548856

  60. Ganapathi I, Prakash S (2017) 3D ear based human recognition using gauss map clustering. In: Proceedings of the 10th annual ACM India compute conference, Bhopal, India, pp 83–89. https://doi.org/10.1145/3140107.3140112

  61. Emersic Z et al. Covariate analysis of descriptor-based ear recognition techniques. In: 2017 international conference and workshop on bioinspired intelligence (IWOBI), Funchal, Portugal, pp 1–9. https://doi.org/10.1109/iwobi.2017.7985520

  62. Basit A, Shoaib M (2014) A human ear recognition method using nonlinear curvelet feature subspace. Int J Comput Math 91(3):616–624. https://doi.org/10.1080/00207160.2013.800194

    Article  MATH  Google Scholar 

  63. Shoaib M, Basit A, Faye I (2016) Multi-resolution analysis for ear recognition using wavelet features. In: AIP conference proceedings, vol 1787, no 1. https://doi.org/10.1063/1.4968150

  64. Ganapathi I et al (2018) Ear recognition in 3D using 2D curvilinear features. IET Biom 7(6):519–529. https://doi.org/10.1049/iet-bmt.2018.5064

    Article  Google Scholar 

  65. Huang H et al (2011) Ear recognition based on uncorrelated local Fisher discriminant analysis. Neurocomputing 74(17):3103–3113. https://doi.org/10.1016/j.neucom.2011.04.022

    Article  Google Scholar 

  66. Morales A et al. (2013) Analysis of local descriptors features and its robustness applied to ear recognition. In: 2013 47th international Carnahan conference on security technology (ICCST), Medellin, pp 1–5. https://doi.org/10.1109/ccst.2013.6922040

  67. Sanchez D, Melin P (2014) Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng Appl Artif Intell 27:41–56. https://doi.org/10.1016/j.engappai.2013.09.014

    Article  Google Scholar 

  68. Sanchez D, Melin P, Castillo O (2017) Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng Appl Artif Intell 64:172–186. https://doi.org/10.1016/j.engappai.2017.06.007

    Article  Google Scholar 

  69. Melin P, Sanchez D, Castillo O (2012) Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf Sci 197:1–19. https://doi.org/10.1016/j.ins.2012.02.027

    Article  Google Scholar 

  70. Sibai F et al (2013) Ear recognition with feed-forward artificial neural networks. Neural Comput Appl 23(5):1265–1273. https://doi.org/10.1007/s00521-012-1068-1

    Article  Google Scholar 

  71. Xu Y, Zeng W (2012) Ear recognition based on centroid and spindle. Proc Eng 29:2162–2166. https://doi.org/10.1016/j.proeng.2012.01.280

    Article  Google Scholar 

  72. Liu Y, Zhang B, Zhang D (2015) Ear-parotic face angle: a unique feature for 3D ear recognition. Pattern Recognit Lett 53:9–15. https://doi.org/10.1016/j.patrec.2014.10.014

    Article  Google Scholar 

  73. Emersic Z et al. (2017) Training convolutional neural networks with limited training data for ear recognition in the wild. In: 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017), Washington, DC, USA, pp 987–994. https://doi.org/10.1109/fg.2017.123

  74. Emersic Z et al. (2017) The unconstrained ear recognition challenge. In: 2017 IEEE international joint conference on biometrics (IJCB), Denver, CO, USA, pp 715–724. https://doi.org/10.1109/btas.2017.8272761

  75. Almisreb A, Jamil N, Din N (2018) Utilizing AlexNet deep transfer learning for ear recognition, In: 2018 fourth international conference on information retrieval and knowledge management (CAMP), Kota Kinabalu, Malaysia, pp 1–5. https://doi.org/10.1109/infrkm.2018.8464769

  76. Emersic Z et al (2018) Evaluation and analysis of ear recognition models: performance, complexity and resource requirements. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3530-1

    Article  Google Scholar 

  77. Omara I et al. (2017) Learning pairwise SVM on deep features for ear recognition. In: 2017 IEEE/ACIS 16th international conference on computer and information science (ICIS), Wuhan, pp 341–346. https://doi.org/10.1109/icis.2017.7960016

  78. Bustard J, Nixon M (2010) Toward unconstrained ear recognition from two-dimensional images. IEEE Trans Syst Man Cybern Part A Syst Hum 40(3):486–494. https://doi.org/10.1109/TSMCA.2010.2041652

    Article  Google Scholar 

  79. Ahuja S, Saini M, Saini JS (2017) Design of semi-orthogonal wavelet for human ear recognition. In: 2017 international conference on trends in electronics and informatics (ICEI), Tirunelveli, pp 413–418. https://doi.org/10.1109/icoei.2017.8300959

  80. Yazdanpanah A, Faez K (2011) Gabor-based RCM features for ear recognition. https://doi.org/10.5772/971

  81. Arunachalam M, Alagarsamy S (2017) An efficient ear recognition system using DWT & BLPOC. In: 2017 international conference on inventive communication and computational technologies (ICICCT), Coimbatore, India, pp 16–19. https://doi.org/10.1109/icicct.2017.7975188

  82. Watabe D, Minamidani T, Sai H (2017) Another attempt at estimating the camera angle in ear recognition. Int J Affect Eng 17(2):147–153. https://doi.org/10.5057/ijae.IJAE-D-17-00012

    Article  Google Scholar 

  83. Youbi Z, Boubchir L, Boukrouche A (2018) Human ear recognition based on local multi-scale LBP features with city-block distance. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-6768-9

    Article  Google Scholar 

  84. Omara I et al (2018) Metric learning with dynamically generated pairwise constraints for ear recognition. Information 9(9):215. https://doi.org/10.3390/info9090215

    Article  Google Scholar 

  85. Benzaoui A, Boukrouche A (2017) Ear recognition using local color texture descriptors from one sample image per person. In: 2017 4th international conference on control, decision and information technologies (CoDIT), Barcelona, pp 0827–0832. https://doi.org/10.1109/codit.2017.8102697

  86. Benzaoui A, Adjabi I, Boukrouche A (2017) Experiments and improvements of ear recognition based on local texture descriptors. Opt Eng 56(4):13. https://doi.org/10.1117/1.OE.56.4.043109

    Article  Google Scholar 

  87. Omara I, Hagag A, Zuo W (2018) Learning LogDet divergence for ear recognition. In: Proceedings of the 2018 2nd international conference on biometric engineering and applications, Amsterdam, Netherlands, pp 69–73. https://doi.org/10.1145/3230820.3230832

  88. Kurniawan F, Rahim M, Khalil M (2014) Geometrical and eigenvector features for ear recognition. In: 2014 international symposium on biometrics and security technologies (ISBAST), Kuala Lumpur, pp 57-62. https://doi.org/10.1109/isbast.2014.7013094

  89. Omara I et al (2018) Learning pairwise SVM on hierarchical deep features for ear recognition. IET Biom 7(6):557–566. https://doi.org/10.1049/iet-bmt.2017.0087

    Article  Google Scholar 

  90. Zhao H, Yi J (2016) Combining block DCV and support vector machine for ear recognition. Int J Interdiscip Telecommun Netw (IJITN) 8(2):36–44. https://doi.org/10.4018/IJITN.2016040104

    Article  Google Scholar 

  91. Zarachoff M, Sheikh-Akbari A, Monekosso D (2018) 2D multi-band PCA and its application for ear recognition. In: 2018 IEEE international conference on imaging systems and techniques (IST), Krakow, Poland, pp 1–5. https://doi.org/10.1109/ist.2018.8577132

  92. Sultana M, Paul P, Gavrilova M (2015) A novel index-based rank fusion method for occluded ear recognition. In: 2015 international conference on cyberworlds (CW), Visby, pp 337–344. https://doi.org/10.1109/cw.2015.30

  93. Sarangi P, Mishra B, Dehuri S (2017) Ear recognition using pyramid histogram of orientation gradients. In: 2017 4th international conference on signal processing and integrated networks (SPIN), Noida, pp 590–595. https://doi.org/10.1109/spin.2017.8050018

  94. Ganapathi I, Ali S, Prakash S (2018) Geometric statistics-based descriptor for 3D ear recognition. Vis Comput. https://doi.org/10.1007/s00371-018-1593-8

    Article  Google Scholar 

  95. Zhou J, Cadavid S, Mottaleb M (2011) Exploiting color SIFT features for 2D ear recognition. In: 2011 18th IEEE international conference on image processing, Brussels, pp 553–556. https://doi.org/10.1109/icip.2011.6116405

  96. Ganapathi I, Prakash S (2018) 3D ear recognition using global and local features. IET Biom 7(3):232–241. https://doi.org/10.1049/iet-bmt.2017.0212

    Article  Google Scholar 

  97. Youbi Z et al. (2016) Human ear recognition based on multi-scale local binary pattern descriptor and KL divergence. In: 2016 39th international conference on telecommunications and signal processing (TSP), Vienna, Austria, pp 685–688. https://doi.org/10.1109/tsp.2016.7760971

  98. Hassaballah M, Alshazly H, Ali A (2019) Ear recognition using local binary patterns: a comparative experimental study. Expert Syst Appl 118:182–200. https://doi.org/10.1016/j.eswa.2018.10.007

    Article  Google Scholar 

  99. Mohamad M et al (2018) A dense phase descriptor for human ear recognition. IEEE Access 6:11883–11887. https://doi.org/10.1109/ACCESS.2018.2810339

    Article  Google Scholar 

  100. Guermoui M, Melaab D, Mekhalfi M (2016) Sparse coding joint decision rule for ear print recognition. Opt Eng 55(9):9. https://doi.org/10.1117/1.OE.55.9.093105

    Article  Google Scholar 

  101. Raghavendra R et al (2018) Improved ear verification after surgery—an approach based on collaborative representation of locally competitive features. Pattern Recognit 83:416–429. https://doi.org/10.1016/j.patcog.2018.06.008

    Article  Google Scholar 

  102. Raghavendra R, Raja K, Busch C (2016) Ear recognition after ear lobe surgery: a preliminary study. In: 2016 IEEE international conference on identity, security and behavior analysis (ISBA), Sendai, Japan, pp 1–6. https://doi.org/10.1109/isba.2016.7477249

  103. Hansley E, Segundo M, Sarkar S (2018) Employing fusion of learned and handcrafted features for unconstrained ear recognition. IET Biom 7(3):215–223. https://doi.org/10.1049/iet-bmt.2017.0210

    Article  Google Scholar 

  104. Zhang Y et al (2018) Ear verification under uncontrolled conditions with convolutional neural networks. IET Biom 7(3):185–198. https://doi.org/10.1049/iet-bmt.2017.0176

    Article  Google Scholar 

  105. Kacar U, Kirci M (2019) ScoreNet: deep cascade score level fusion for unconstrained ear recognition. IET Biom 8(2):109–120. https://doi.org/10.1049/iet-bmt.2018.5065

    Article  Google Scholar 

  106. Eyiokur F, Yaman D, Ekenel H (2018) Domain adaptation for ear recognition using deep convolutional neural networks. IET Biom 7(3):199–206. https://doi.org/10.1049/iet-bmt.2017.0209

    Article  Google Scholar 

  107. Ariffin S, Jamil N, Rahman P (2017) Can thermal and visible image fusion improves ear recognition? In: 2017 8th international conference on information technology (ICIT), Amman, pp 780–784. https://doi.org/10.1109/icitech.2017.8079945

  108. Jiddah S, Yurtkan K (2018) Fusion of geometric and texture features for ear recognition. In: 2018 2nd international symposium on multidisciplinary studies and innovative technologies (ISMSIT), Ankara, Turkey, pp 1–5. https://doi.org/10.1109/ismsit.2018.8567044

  109. Sepas-Moghaddam A, Pereira F, Correia P (2018) Ear recognition in a light field imaging framework: a new perspective. IET Biom 7(3):224–231. https://doi.org/10.1049/iet-bmt.2017.0204

    Article  Google Scholar 

  110. Banerjee S, Chatterjee A (2017) Robust multimodal multivariate ear recognition using kernel based simultaneous sparse representation. Eng Appl Artif Intell 64:340–351. https://doi.org/10.1016/j.engappai.2017.06.011

    Article  Google Scholar 

  111. Kacar U, Kirci M (2018) Ear recognition with score-level fusion based on CMC in long-wave infrared spectrum. arXiv:1801.09054

  112. Amirthalingam G, Radhamani G (2016) New chaff point based fuzzy vault for multimodal biometric cryptosystem using particle swarm optimization. J King Saud Univ Comput Inf Sci 28(4):381–394. https://doi.org/10.1016/j.jksuci.2014.12.011

    Article  Google Scholar 

  113. Huang Z et al (2015) An adaptive bimodal recognition framework using sparse coding for face and ear. Pattern Recognit Lett 53:69–76. https://doi.org/10.1016/j.patrec.2014.10.009

    Article  Google Scholar 

  114. Yuan L, Liu W, Li Y (2016) Non-negative dictionary based sparse representation classification for ear recognition with occlusion. Neurocomputing 171:540–550. https://doi.org/10.1016/j.neucom.2015.06.074

    Article  Google Scholar 

  115. Hezil N, Boukrouche A (2017) Multimodal biometric recognition using human ear and palmprint. IET Biom 6(5):351–359. https://doi.org/10.1049/iet-bmt.2016.0072

    Article  Google Scholar 

  116. Sarangi P, Mishra B, Dehuri S (2018) Multimodal biometric recognition using human ear and profile face. In: 2018 4th international conference on recent advances in information technology (RAIT), Dhanbad, India, pp 1–6. https://doi.org/10.1109/rait.2018.8389035

  117. Barde S, Zadgaonkar A, Sinha G (2014) PCA based multimodal biometrics using ear and face modalities. Int J Mod Educ Comput Sci 6(5):43. https://doi.org/10.5815/ijitcs.2014.05.06

    Article  Google Scholar 

  118. Paul P, Gavrilova M (2015) Feature and rank level fusion for privacy preserved multi-biometric system. Int J Softw Sci Comput Intell (IJSSCI) 7(1):1–17. https://doi.org/10.4018/IJSSCI.2015010101

    Article  Google Scholar 

  119. Toygar O, Alqaralleh E, Afaneh A (2018) Symmetric ear and profile face fusion for identical twins and non-twins recognition. Signal Image Video Process 12(6):1157–1164. https://doi.org/10.1007/s11760-018-1263-3

    Article  Google Scholar 

  120. Emersic Z et al. (2018) Towards accessories-aware ear recognition. In: 2018 IEEE international work conference on bioinspired intelligence (IWOBI), San Carlos, Costa Rica, pp 1–8. https://doi.org/10.1109/iwobi.2018.8464138

  121. Iyyakutti IG, Prakash S (2016) False mapped feature removal in spin images based 3D ear recognition. In: 2016 3rd international conference on signal processing and integrated networks (SPIN), Noida, India, pp 620–623. https://doi.org/10.1109/spin.2016.7566771

  122. Mamta, Hanmandlu M (2015) Multimodal biometric system built on the new entropy function for feature extraction and the refined scores as a classifier. Expert Syst Appl 42(7):3702–3723. https://doi.org/10.1016/j.eswa.2014.11.054

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank editors and all reviewers for their valuable and constructive suggestions.

Funding

This work was jointly supported by Fundamental Research Funds for the Central Universities (lzuxxxy-2018-it73) and National Science Foundation of China (Grant No. 61201421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaobin Wang or Ying Zhu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, J. & Zhu, Y. Review of Ear Biometrics. Arch Computat Methods Eng 28, 149–180 (2021). https://doi.org/10.1007/s11831-019-09376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09376-2

Navigation