Skip to main content
Log in

A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Numerical weather prediction (NWP) is in a period of transition. As resolutions increase, global models are moving towards fully nonhydrostatic dynamical cores, with the local and global models using the same governing equations; therefore we have reached a point where it will be necessary to use a single model for both applications. The new dynamical cores at the heart of these unified models are designed to scale efficiently on clusters with hundreds of thousands or even millions of CPU cores and GPUs. Operational and research NWP codes currently use a wide range of numerical methods: finite differences, spectral transform, finite volumes and, increasingly, finite/spectral elements and discontinuous Galerkin, which constitute element-based Galerkin (EBG) methods. Due to their important role in this transition, will EBGs be the dominant power behind NWP in the next 10 years, or will they just be one of many methods to choose from? One decade after the review of numerical methods for atmospheric modeling by Steppeler et al. (Meteorol Atmos Phys 82:287–301, 2003), this review discusses EBG methods as a viable numerical approach for the next-generation NWP models. One well-known weakness of EBG methods is the generation of unphysical oscillations in advection-dominated flows; special attention is hence devoted to dissipation-based stabilization methods. Since EBGs are geometrically flexible and allow both conforming and non-conforming meshes, as well as grid adaptivity, this review is concluded with a short overview of how mesh generation and dynamic mesh refinement are becoming as important for atmospheric modeling as they have been for engineering applications for many years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. www.top500.org.

  2. Alternatively, the basis functions can be constructed using Eq. (38).

References

  1. Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125:2293–2315

    Article  Google Scholar 

  2. Ahmad N, Lindeman J (2007) Euler solutions using flux-based wave decomposition. Int J Numer Methods Fluids 54:47–72

    Article  MathSciNet  MATH  Google Scholar 

  3. Arakawa A, Konor CS (2009) Unification of the anelastic and quasi-hydrostatic systems of equations. Mon Weather Rev 137:710–726

    Article  Google Scholar 

  4. Argyris JH, Kelsey S (1960) Energy theorems and structural analysis. Butterworths, London. Reprented from a series of article in Aircraft Eng 19, 742

  5. Aubry R, Vázquez M, Houzeaux G, Cela JM, Marras S (2010) An unstructured CFD approach to numerical weather prediction. In: Proceedings: 48th AIAA aerospace sciences meeting, 4–7 January 2010, Orlando, Florida. AIAA paper, pp 691–783

  6. Avila M, Codina R, Principe J (2014) Large eddy simulation of low mach number flows using dynamic and orthogonal subgrid scales. Comput Fluids 99:44–66

    Article  MathSciNet  Google Scholar 

  7. Babuska I, Szabo BA, Katz IN (1981) The p-version of the finite element method. SIAM J Numer Anal 18(3):515–545

    Article  MathSciNet  MATH  Google Scholar 

  8. Bacon D, Ahmad N, Boybeyi Z, Dunn T, Hall M, Lee C, Sarma R, Turner M (2000) A dynamically adaptive weather and dispersion model: the operational multiscale environment model with grid adaptivity (OMEGA). Mon Weather Rev 128:2044–2075

    Article  Google Scholar 

  9. Baiocchi C, Brezzi F, Franca L (1993) Virtual bubbles and the Galerkin/least-squares type methods (Ga.L.S.). Comput Methods Appl Mech Eng 105:121–141

    Article  MathSciNet  MATH  Google Scholar 

  10. Bannon P (1996) On the anelastic approximation for a compressible atmosphere. J Atmos Sci 53:3618–3628

    Article  Google Scholar 

  11. Baruzzi G, Habashi W, Hefez N (1992) A second order accurate finite element method for the solutions of the Euler and Navier-Stokes equations. In: Proceedings of the 13th international conference on numerical methods in fluid dynamics, Rome. Springer, pp 509–513

  12. Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations. J Comput Phys 131:267–279. doi:10.1006/jcph.1996.5572

    Article  MathSciNet  MATH  Google Scholar 

  13. Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138:251–285. doi:10.1006/jcph.1997.5454

    Article  MathSciNet  MATH  Google Scholar 

  14. Bastos J, Sadowski N (2003) Electromagnetic modeling by finite element methods, 1st edn. CRC, Boca Raton

    Book  Google Scholar 

  15. Batchelor G (1953) The condition for dynamical similarities of motions of a frictionless perfect-gas atmosphere. Q J R Meteorol Soc 79:224–235

    Article  Google Scholar 

  16. Bauer W, Baumann M, Scheck L, Gassmann A, Heuveline V, Jones S (2014) Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity. Theor Comput Fluid Dyn 28(1):107–128

    Article  Google Scholar 

  17. Bazilevs Y, Calo V, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201

    Article  MathSciNet  MATH  Google Scholar 

  18. Behrens J (2006) Adaptive atmospheric modeling. Key techniques in grid generation, data structures, and numerical operations with applications. Springer, Berlin

    MATH  Google Scholar 

  19. Beland M, Coté J, Staniforth A (1983) The accuracy of a finite-element vertical discretization scheme for primitive equation models: comparison with a finite-difference scheme. Mon Weather Rev 111:2298–2318

    Article  Google Scholar 

  20. Benacchio T, O’Neill WP, Klein R (2014) A blended soundproof-to-compressible numerical model for small to meso-scale atmospheric dynamics. Mon Weather Rev 142:4416–4438

    Article  Google Scholar 

  21. Benoit R, Desgagne M, Pellerin P, Pellerin S, Chartier Y, Desjardins S (1997) The Canadian MC2: a semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon Weather Rev 125:2382–2415

    Article  Google Scholar 

  22. Berg J, Mann J, Bechmann A, Courtney M, Jørgensen HE (2011) The bolund experiment, part i: flow over a steep, three-dimensional hill. Bound Layer Meteorol 141:219–243

    Article  Google Scholar 

  23. Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1):64–84

    Article  MATH  Google Scholar 

  24. Berger MJ, Oliger J (1984) Adaptive mesh refinement for hyperbolic partial differential equations. J Comput Phys 53(3):484–512

    Article  MathSciNet  MATH  Google Scholar 

  25. Bernardi C, Maday Y, Patera AT (1993) Domain decomposition by the mortar element method. In: Asymptotic and numerical methods for partial differential equations with critical parameters. Springer, pp 269–286

  26. Bey K, Oden JT (1991) A Runge–Kutta discontinuous finite element method for high speed flows. In: AIAA computational fluid dynamics conference, 10th, Honolulu, HI, pp 541–555

  27. Bolton D (1980) The computation of equivalent potential temperature. Mon Weather Rev 108:1046–1053

    Article  Google Scholar 

  28. Boman EG, Catalyurek UV, Chevalier C, Devine KD (2012) The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: partitioning, ordering, and coloring. Sci Program 20(2):129–150

    Google Scholar 

  29. Bonaventura L (2000) A semi-implicit, semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows. J Comput Phys 158:186–213

    Article  MathSciNet  MATH  Google Scholar 

  30. Botta N, Klein R, Langenberg S, Lutzenkirchen S (2004) Well balanced finite volume methods for nearly hydrostatic flows. J Comput Phys 196:539–565

    Article  MathSciNet  MATH  Google Scholar 

  31. Boyd JP (1996) The erfc-log filter and the asymptotics of the Euler and Vandeven sequence accelerations.In: Ilin AV, Scott LR (eds) Proceedings of the third international conference on spectral and high order methods, Houston Journal of Mathematics, pp 267–276

  32. Boyd JP (1998) Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods. J Comput Phys 143:283–288

    Article  MathSciNet  MATH  Google Scholar 

  33. Brdar S (2012) A higher order locally adaptive discontinuous Galerkin approach for atmospheric simulations. Ph.D. thesis, Universitätsbibliothek Freiburg

  34. Brdar S, Baldauf M, Dedner A, Klöfkorn R (2012) Comparison of dynamical cores for NWP models: comparison of COSMO and DUNE. Theor Comput Fluid Dyn 27:453–472

    Article  Google Scholar 

  35. Brezzi F, Bristeau M, Franca L, Mallet M, Rogé G (1992) A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput Methods Appl Mech Eng 96:117–129

    Article  MathSciNet  MATH  Google Scholar 

  36. Brezzi F, Franca L, Hughes TJR, Russo A (1996) Stabilization techniques and subgrid scales capturing. Tech. Rep. http://ccm.ucdenver.edu/reports/rep083.pdf

  37. Brezzi F, Franca LP, Hughes TR (1997) \(b=\int g\). Comput Methods Appl Mech Eng 145:329–339

    Article  MathSciNet  MATH  Google Scholar 

  38. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convective dominated flows with particular emphasis on the incompressible navier-stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MathSciNet  MATH  Google Scholar 

  39. Bryan GH, Morrison H (2011) Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon Weather Rev 140:202–225

    Article  Google Scholar 

  40. Budd CJ, Williams JF (2009) Moving mesh generation using the parabolic Monge–Ampére equation. SIAM J Sci Comput 31:3438–3465

    Article  MathSciNet  MATH  Google Scholar 

  41. Burridge D, Steppeler J, Struffing R (1986) Finite element schemes for the vertical discretization of the ecmwf forecast model using linear elements. Tech. Rep. 54, ECMWF, Sheffild Park, Reading, UK

  42. Burstedde C, Wilcox LC, Ghattas O (2011) p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J Sci Comput 33(3):1103–1133

    Article  MathSciNet  MATH  Google Scholar 

  43. Canuto C (1994) Stabilization of spectral methods by finite element bubble functions. Comput Methods Appl Mech Eng 116:13–26

    Article  MathSciNet  MATH  Google Scholar 

  44. Canuto C, Puppo G (1994) Bubble stabilization of spectral Legendre methods for the advection–diffusion equation. Comput Methods Appl Mech Eng 118:239–263

    Article  MathSciNet  MATH  Google Scholar 

  45. Canuto C, Russo A, Van Kemenade V (1998) Stabilized spectral methods for the Navier–Stokes equations: residual-free bubbles and preconditioning. Comput Methods Appl Mech Eng 166:65–83

    Article  MathSciNet  MATH  Google Scholar 

  46. Canuto C, Van Kemenade V (1996) Bubble-stabilized spectral methods for the incomplressible Navier–Stokes equations. Comput Methods Appl Mech Eng 135:35–61

    Article  MATH  Google Scholar 

  47. Chang RY, Hsu CH (1996) A variable-order spectral element method for incompressible viscous flow simulation. Int J Numer Methods Eng 39(17):2865–2887

    Article  MathSciNet  MATH  Google Scholar 

  48. Chavent G, Salzano G (1982) A finite-element method for the 1-d water flooding problem with gravity. J Comput Phys 45(3):307–344

    Article  MathSciNet  MATH  Google Scholar 

  49. Chevalier C, Pellegrini F (2008) Pt-scotch: a tool for efficient parallel graph ordering. Parallel Comput 34(6):318–331

    Article  MathSciNet  Google Scholar 

  50. Christie I, Griffiths D, Mitchell A, Zienkiewicz OC (1976) Finite element methods for second order differential equations with significant first derivatives. Int J Numer Methods Eng 10:1389–1396

    Article  MathSciNet  MATH  Google Scholar 

  51. Ciarlet PG (1978) The finite element method for elliptic problems. Elsevier, Amsterdam

    MATH  Google Scholar 

  52. Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous Galerkin methods. UMSI research report/University of Minnesota (Minneapolis, MN). Supercomputer Institute, vol 99, p 220

  53. Cockburn B, Shu CW (1991) The Runge–Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws. Rairo-Math Model Numer 25(3):337–361

    MathSciNet  MATH  Google Scholar 

  54. Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J Numer Anal 35(6):2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  55. Codina R (1993) A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection–diffusion equation. Comput Methods Appl Mech Eng 110:325–342

    Article  MathSciNet  MATH  Google Scholar 

  56. Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Methods Appl Mech Eng 190:1579–1599

    Article  MathSciNet  MATH  Google Scholar 

  57. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321

    Article  MathSciNet  MATH  Google Scholar 

  58. Codina R, Blasco J (2002) Analysis of a stabilized finite element approximation of the transient convection–diffusion–reaction equation using orthogonal subscales. Comput Vis Sci 4:167–174

    Article  MathSciNet  MATH  Google Scholar 

  59. Codina R, Oñate E, Cervera M (1992) The intrinsic time for the streamline upwind/Petrov–Galerkin formulation using quadratic elements. Comput Methods Appl Mech Eng 94:239–262

    Article  MATH  Google Scholar 

  60. Collis SS, Chang Y (2002) The DG/VMS method for unified turbulence simulation. AIAA Pap 3124:24–27

    Google Scholar 

  61. Corsini A, Rispoli F, Santoriello A (2005) A variational multiscale higher-order finite element formulation for turbomachinery flow computations. Comput Methods Appl Mech Eng 194(45–47):4797–4823

    Article  MathSciNet  MATH  Google Scholar 

  62. COSMO P (1998) Consortium for small-scale modeling. COSMO project. www.cosmo-model.org/content/model/documentation

  63. Coté J (1988) A Lagrange multiplier approach for the metric terms of semi-Lagrangian models on the sphere. Q J R Meteorol Soc 114(483):1347–1352

    Google Scholar 

  64. Coté J, Desmarais J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC-MRB global environmental multiscale GEM model. Part II: results. Mon Weather Rev 126:1397–1418

    Article  Google Scholar 

  65. Coté J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC-MRB global environmental multiscale (gem) model. Part i: design considerations and formulation. Mon Weather Rev 126:1373–1395

    Article  Google Scholar 

  66. Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrat. Bull Am Math Soc 49:1–23

    Article  MathSciNet  MATH  Google Scholar 

  67. Courant R, Friedrichs K, Lewy H (1928) Uber die partiellen differenzengleichungen der mathematischen physik. Math Ann 100:32–74

    Article  MathSciNet  MATH  Google Scholar 

  68. Courtier P, Freydier C, Geleyn J, Rabier F, Rochas M (1991) The arpege project at meteo-france. In: ECMWF workshop on numerical methods in atmospheric modelling vol II, 2, pp 193–231

  69. Cullen M (1973) A simple finite element method for meteorological problems. J Inst Math Appl 11:15–31

    Article  MATH  Google Scholar 

  70. Cullen M (1974) A finite element method for a non-linear initial value problem. IMA J Appl Math 13:233–247

    Article  MATH  Google Scholar 

  71. Cullen MJP (1990) A test of a semi-implicit integration technique for a fully compressible nonhydrostatic model. Q J R Meteorol Soc 116:1253–1258

    Article  Google Scholar 

  72. Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102:405–418

    Google Scholar 

  73. Dennis J, Vertenstein M, Worley P, Mirin A, Craig A, Jacob R, Mickelson S (2012) Computational performance of ultra-high-resolution capability in the community earth system model. Int J High Perf Comput Appl 26:43–53

  74. Dennis JM, Edwards J, Evans KJ, Guba O, Lauritzen PH, Mirin AA, St-Cyr A, Taylor MA, Worley PH (2012) CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int J High Perf Comput Appl 26

  75. Dietachmayer GS, Droegemeier KK (1992) Application of continuous dynamic grid adaptation techniques to meteorological modeling. Part 1: basic formulation and accuracy. Mon Weather Rev 120(8):1675–1706

    Article  Google Scholar 

  76. Dolejši V, Feistauer M (2004) A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J Comput Phys 198:727–746

    Article  MathSciNet  MATH  Google Scholar 

  77. Doms G, Schattler U (2002) A description of the nonhydrostatic regional model LM. Part I: dynamics and numerics. Consortium for small-scale modelling (COSMO) LM F90 2.18. Tech. rep., DWD, Germany, www.cosmo-model.org

  78. Donea J (1984) A Taylor–Galerkin method for convection transport problems. Int J Numer Methods Eng 20:101–119

    Article  MATH  Google Scholar 

  79. Donea J, Huerta A (2003) Finite element methods for flow problems, 1st edn. Wiley, New York

    Book  Google Scholar 

  80. Dongarra JJ, Luszczek P, Petitet A (2003) The LINPACK benchmark: past, present, and future. concurrency and computation: practice and experience. Concurrency and computation: practice and experience 15, 2003

  81. Dorr MR (1988) Domain decomposition via Lagrange multipliers. UCRL-98532, Lawrence Livermore National Laboratory, Livermore, CA

  82. Douglas J, Wang J (1989) An absolutely stabilized finite element method. Math Comput 52:495–508

    Article  MathSciNet  MATH  Google Scholar 

  83. Dudhia J (1993) A nonhydrostatic version of the penn state-ncar mesoscale model: validation tests and simulation of the atlantic cyclone and cold front. Mon Weather Rev 121:1493–1513

    Article  Google Scholar 

  84. Durran D (1989) Improving the anelastic approximation. J Atmos Sci 46:1453–1461

    Article  Google Scholar 

  85. Durran D (1998) Numerical methods for wave equations in geophysical fluid dynamics, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  86. Durran D (2008) A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. J Fluid Mech 601:365–379

    Article  MathSciNet  MATH  Google Scholar 

  87. Durran D, Blossey P (2012) Implicit-explicit multistep methods for fast-wave-slow-wave problems. Mon Weather Rev 140:1307–1325

    Article  Google Scholar 

  88. Emanuel KA (1994) Atmospheric convection. Oxford University Press, Oxford

    Google Scholar 

  89. Eriksson LE (1982) Generation of boundary conforming grids around wing-body configurations using transfinite interpolation. AIAA J. 20:1313–1320

    Article  MATH  Google Scholar 

  90. Eskilsson C, Sherwin SJ (2004) A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations. Int J Numer Methods Fluids 45:605–623

    Article  MathSciNet  MATH  Google Scholar 

  91. Farhat C, Rajasekharan A, Koobus B (2006) A dynamic variational multiscale method for large eddy simulations on unstructured meshes. Comput Methods Appl Mech Eng 195(13–16):1667–1691. doi:10.1016/j.cma.2005.05.045. http://www.sciencedirect.com/science/article/pii/S0045782505003014. A Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday

  92. Favre A (1983) Turbulence: space–time statistical properties and behavior in supers onic flows. Phys Fluids 26:2851–2863

    Article  MATH  Google Scholar 

  93. Fischer PF, Kruse GW, Loth F (2002) Spectral element methods for transitional flows in complex geometries. J Sci Comput 17(1–4):81–98

    Article  MathSciNet  MATH  Google Scholar 

  94. Fischer PF, Mullen JS (2001) Filter-based stabilization of spectral element methods. C R Acad Sci Ser I Math 332:265–270

    MathSciNet  MATH  Google Scholar 

  95. Fletcher C (1987) Computational techniques for fluid dynamics—vol I: fundamentals and general techniques, 1st edn. Springer, Berlin

    Google Scholar 

  96. Fornberg B (1998) A practical guide to pseudospectral methods, vol 1. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  97. Fortin M, Fortin A (1989) A new approach for the fem simulation of viscoelastic flows. J Non-Newton Fluid Mech 32(3):295–310

    Article  MathSciNet  MATH  Google Scholar 

  98. Fournier A, Taylor MJ, Tribbia JJ (2004) The spectral element atmospheric model (SEAM): high-resolution parallel computation and localized resolution of regional dynamics. Mon Weather Rev 132:726–748

    Article  Google Scholar 

  99. Fraedrich K, Kirk E, Luksch U, Lunkeit F (2005) The portable university model of the atmosphere (PUMA): Storm track dynamics and low frequency variabilit. Meteorol Z 14:735–745

    Article  Google Scholar 

  100. Franca L, Frey S, Hughes T (1992) Stabilized finite element methods. I: application to the advective–diffusive model. Comput Methods Appl Mech Eng 95(2):253–276

    Article  MathSciNet  MATH  Google Scholar 

  101. Francis P (1972) The possible use of Laguerre polynomials for representing the vertical structure of numerical models of the atmosphere. Q J R Meteorol Soc 98:662–667

    Article  Google Scholar 

  102. Fries TP, Matthies HG (2004) A review of Petrov-Galerkin stabilization approaches and an extension to meshfree methods. Tech. Rep. 1, Institute of Scientific Computing. Technical University Braunschweig

  103. Gaberšek S, Giraldo FX, Doyle J (2012) Dry and moist idealized experiments with a two-dimensional spectral element model. Mon Weather Rev 140:3163–3182

    Article  Google Scholar 

  104. Gal-Chen T, Somerville R (1975) On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J Comput Phys 17:209–228

    Article  MathSciNet  MATH  Google Scholar 

  105. Galerkin BG (1915) Series solution of some problems of elastic equilibrium of rods and plates. Vestn Inzh Tekh 19:897–908

    Google Scholar 

  106. Gassmann A (2005) An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteorol Atmos Phys 88:23–38

    Article  Google Scholar 

  107. Gassmann A, Herzog HJ (2008) Towards a consistent numerical compressible non-hydrostatic model using generalized hamiltonian tools. Q J R Meteorol Soc 134:1597–1613

    Article  Google Scholar 

  108. Geurts BJ (2004) Elements of direct and large eddy simulation. Edwards, Philadelphia

    Google Scholar 

  109. Ginis I, Richardson RA, Rothstein LM (1998) Design of a multiply nested primitive equation ocean model. Mon Weather Rev 126(4):1054–1079

    Article  Google Scholar 

  110. Giraldo FX (1997) Lagrange–Galerkin methods on spherical geodesic grids. J Comput Phys 136:197–213

    Article  MathSciNet  MATH  Google Scholar 

  111. Giraldo FX (2000) The Lagrange–Galerkin method for the two-dimensional shallow water equations on adaptive grids. Int J Numer Methods Fluids 33(6):789–832

    Article  MathSciNet  MATH  Google Scholar 

  112. Giraldo FX (2001) A spectral element shallow water model on spherical geodesic grids. Int J Numer Methods Fluids 35:869–901

    Article  MATH  Google Scholar 

  113. Giraldo FX (2001) A spectral element shallow water model on spherical geodesic grids. Int J Numer Methods Fluids 35:869–901

    Article  MATH  Google Scholar 

  114. Giraldo FX (2005) Semi-implicit time-integrators for a scalable spectral element atmospheric model. Q J R Meteorol Soc 131:2431–2454

    Article  Google Scholar 

  115. Giraldo FX (2015) Element-based Galerkin methods on tensor-product bases. In: Lecture notes, pp 430

  116. Giraldo FX, Hesthaven JS, Warburton T (2002) Nodal high-order discontinuous Galerkin methods for spherical shallow water equations. J Comput Phys 181:499–525

    Article  MathSciNet  MATH  Google Scholar 

  117. Giraldo FX, Kelly JF, Constantinescu EM (2013) Implicit–explicit formulations for a 3D nonhydrostatic unified model of the atmosphere (NUMA). SIAM J Sci Comput 35:1162–1194

    Article  MathSciNet  MATH  Google Scholar 

  118. Giraldo FX, Restelli M (2008) A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases. J Comput Phys 227:3849–3877

    Article  MathSciNet  MATH  Google Scholar 

  119. Giraldo FX, Rosmond T (2004) A scalable spectral element eulerian atmospheric model (see-am) for numerical weather prediction: dynamical core tests. Mon Weather Rev 132:133–153

    Article  Google Scholar 

  120. Gjesdal T, Wasberg CE, Reif BAP, Andreassen Ø (2009) Variational multiscale turbulence modelling in a high order spectral element method. J Comput Phys 228:7333–7356

    Article  MathSciNet  MATH  Google Scholar 

  121. Gopalakrishnan SG, Bacon DP, Ahmad NN, Boybeyi Z, Dunn TJ, Hall MS, Jin Y, Lee PCS, Mays DE, Madala RV (2002) An operational multiscale hurricane forecasting system. Mont Weather Rev 130(7):1830–1847

    Article  Google Scholar 

  122. Gordon WN, Hall CA (1973) Construction of curvilinear coordinate systems and application to mesh generation. Int J Numer Methods Eng 7:461–477

    Article  MathSciNet  MATH  Google Scholar 

  123. Gravemeier V (2003) The variational multiscale method for laminar and turbulent incompressible flow. Ph.D. thesis, Universitat Stuttgart

  124. Grell G, Dudhia J, Stauffer D (1995) A description of the fifth-generation penn state/ncar mesoscale model (mm5). Tech. rep., NCAR Technical Note NCART/TN-398+STR

  125. Guba O, Taylor MA, Ullrich PA, Overfelt JR, Levy MN (2014) The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware n umerical viscosity. Geosci Model Dev 7:4081–4117

    Article  Google Scholar 

  126. Guermond J, Marra A, Quartapelle L (2006) Subgrid stabilized projection method for 2d unsteady flows at high reynolds numbers. Comput Methods Appl Mech Eng 195:5857–5876

    Article  MathSciNet  MATH  Google Scholar 

  127. Guermond J, Pasquetti R (2009) Entropy viscosity method for high-order approximations of conservation laws. In: Proceedings of the ICOSAHOM 2009 conference, Trondheim, Norway. Springer

  128. Guermond JL, Pasquetti R (2008) Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C R Acad Sci Ser I 346:801–806

    Article  MathSciNet  MATH  Google Scholar 

  129. Guermond JL, Pasquetti R, Popov B (2011) Entropy viscosity method for nonlinear conservation laws. J Comput Phys 230:4248–4267

    Article  MathSciNet  MATH  Google Scholar 

  130. Guo BY, Ma HP, Tadmor E (2001) Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J Numer Anal 39:1254

    Article  MathSciNet  MATH  Google Scholar 

  131. Haidvogel DB, Curchitser E, Iskandarani M, Hughes R, Taylor M (1997) Global modelling of the ocean and atmosphere using the spectral element method. Atmos Ocean 35:505–531

    Article  Google Scholar 

  132. Hansbo P (1993) Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables. J Comput Phys 109:274–288

    Article  MathSciNet  MATH  Google Scholar 

  133. Hesthaven JS, Warburton T (2008) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, vol 54. Springer, New York

    MATH  Google Scholar 

  134. Heus T, van Heerwaarden CC, Jonker H, Siebesma AP, Axelsen S, van den Dries K, Geoffroy O, Moene AF, Pino D, de Roode SR, Vilà-Guerau de Arellano J (2010) Formulation of the Dutch atmospheric large-eddy simulation (DALE) and overview of its applications. Geosci Model Dev 3:415–555

    Article  Google Scholar 

  135. Hodur R (1997) The naval research laboratory’s coupled ocean/atmosphere mesoscale prediction system (coamps). Mon Weather Rev 125:1414–1430

    Article  Google Scholar 

  136. Hogan TF, Liu M, Ridout JA, Peng MS, Whitcomb TR, Ruston BC, Reynolds CA, Eckermann SD, Moskaitis JR, Baker NL (2014) The navy global environmental model. Oceanography 27(3):116–125

    Article  Google Scholar 

  137. Holmstrom I (1963) On a method for parametric representation of the state of the atmosphere. Tellus 15:127–149

    Article  Google Scholar 

  138. Holton J (2004) An introduction to dynamic meteorology, 4th edn. Elsevier, Amsterdam Internation Geophysics Series: Vol. 88

    Google Scholar 

  139. Houze RA (1993) Cloud dynamics. Academic Press, San Diego

    Google Scholar 

  140. Houzeaux G, Aubry R, Vázquez M (2011) Extension of fractional step techniques for incompressible flows: the preconditioned orthomin(1) for the pressure schur complement. Comput Fluids 44:297–313

    Article  MathSciNet  MATH  Google Scholar 

  141. Houzeaux G, Eguzkitza B, Vázquez M (2009) A variational multiscale model for the advection–diffusion–reaction equation. Commun Numer Methods Eng 25:787–809

    Article  MathSciNet  MATH  Google Scholar 

  142. Houzeaux G, Vázquez M, Aubry R, Cela JM (2009) A massively parallel fractional step solver for incompressible flows. J Comput Phys 228:6316–6332

    Article  MathSciNet  MATH  Google Scholar 

  143. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  144. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the finie-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539–557

    Article  MathSciNet  MATH  Google Scholar 

  145. Hughes TJR, Scovazzi G, Tezduyar TE (2010) Stabilized methods for compressible flows. J Sci Comput 43:343–368

    Article  MathSciNet  MATH  Google Scholar 

  146. Hughes TJR, Brooks AN (1979) A multidimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, vol 32. ASME, New York, pp 19–35

    Google Scholar 

  147. Hughes TJR, Brooks AN (1982) A theoretical framework for Petrov–Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. Finite Elem Fluids 4:47–65

    Google Scholar 

  148. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  149. Hughes TJR, Feijóo G, Mazzei L, Quincy J (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24

    Article  MathSciNet  MATH  Google Scholar 

  150. Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Last-squares method for advective–diffusive equations. Comput Methods Appl Mech Eng 73:173–189

    Article  MathSciNet  MATH  Google Scholar 

  151. Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58:305–328

    Article  MathSciNet  MATH  Google Scholar 

  152. Hughes TJR, Mallet M, Mizukami A (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54:341–355

    Article  MathSciNet  MATH  Google Scholar 

  153. Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59

    Article  MATH  Google Scholar 

  154. Hughes TJR, Scovazzi G, Bochev PB, Buffa A (2006) A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method. Comput Methods Appl Mech Eng 195:2761–2787

    Article  MathSciNet  MATH  Google Scholar 

  155. Hughes TJR, Stewart J (1996) A space–time formulation for multiscale phenomena. J Comput Appl Math 74:217–229

    Article  MathSciNet  MATH  Google Scholar 

  156. Hughes TJR, Tezduyar T (1984) Finite element methods for first-order hyperbolic systems with particular emphasis pn the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284

    Article  MathSciNet  MATH  Google Scholar 

  157. Hughes TJR (2000) The finite element method: linear static and dynamics finite element analysis, 2nd edn. Dover, New York

    MATH  Google Scholar 

  158. Iskandarani M, Haidvogel DB, Boyd JP (1995) A staggered spectral element model with application to the oceanic shallow water equations. Int J Numer Methods Fluids 20:393–414

    Article  MATH  Google Scholar 

  159. Jablonowski C (2004) Adaptive grids in weather and climate modeling. Ph.D. thesis, The University of Michigan

  160. Jablonowski C, Williamson D (2006) A baroclinic instability test case for atmospheric model dynamical cores. Q J R Meteorol Soc 132:2943–2975

    Article  Google Scholar 

  161. Jablonowski C, Williamson DL (2011) The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models. Lecture notes in computational science and engineering, vol 80. Springer, pp 381–482

  162. Jähn M, Knoth O, König M, Vogelsberg U (2014) ASAM v2.7: a compressible atmospheric model with a Cartesian cut cell approach. Geosci Model Dev Disc 7(4):4463–4525

    Article  Google Scholar 

  163. Jamet P (1978) Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J Numer Anal 15:912–928

    Article  MathSciNet  MATH  Google Scholar 

  164. Janjic Z (1989) On the pressure gradient force error in \(\sigma \)-coordinate spectral models. Mon Weather Rev 117:2285–2292

    Article  Google Scholar 

  165. Janjic Z (1994) The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  166. Janjic Z (2003) A nonhydrostatic model based on a new approach. Meteorol Atmos Phys 82:271–285

    Article  Google Scholar 

  167. Janjic Z, Gerrity J, Nickovic S (2001) An alternative approach to non-hydrostatic modeling. Mon Weather Rev 129:1164–1178

    Article  Google Scholar 

  168. John V, Knobloch P (2007) On spurious oscillations at layers diminishing (\(sold\)) methods for convection–diffusion equations: part I—a review. Comput Methods Appl Mech Eng 196:2197–2215

    Article  MathSciNet  MATH  Google Scholar 

  169. Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  170. Johnson C, Nävert U, Pitkaranta J (1984) Finite element methods for linear hyperbolic problems. Comput Methods Appl Mech Eng 45:285–312

    Article  MathSciNet  MATH  Google Scholar 

  171. Johnson C, Szepessy A (1988) Shock-capturing streamline diffusion finite element methods for nonlinear conservation laws. In: Hughes TJR, Tezduyar T (eds) AMD, The American Society of Mechanical Engineers, vol 95

  172. Kanevsky A, Carpenter MH, Hesthaven JS (2006) Idempotent filtering in spectral and spectral element methods. J Comput Phys 220:41–58

    Article  MathSciNet  MATH  Google Scholar 

  173. Karniadakis G, Sherwin S (2005) Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  174. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    Article  MathSciNet  MATH  Google Scholar 

  175. Kaul KU (2010) Three-dimensional elliptic grid generation with fully automatic boundary constraints. J Comput Phys 229:5966–5979

    Article  MATH  Google Scholar 

  176. Kelly JF, Giraldo FX (2012) Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode. J Comput Phys 231:7988–8008

    Article  MathSciNet  MATH  Google Scholar 

  177. Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation. Meteorol Monogr 10:32

    Google Scholar 

  178. Klein R (2000) Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. ZAMM 80:765–777

    Article  MathSciNet  MATH  Google Scholar 

  179. Klein R, Achatz U, Bresch D, Knio O, Smolarkiewicz PK (2010) Regime of validity of soundproof atmospheric flow models. J Atmos Sci 67:3226–3237

    Article  Google Scholar 

  180. Klemp J (2011) A terrain-following coordinate with smoothed coordinate surfaces. Mon Weather Rev 139:2163–2169

    Article  Google Scholar 

  181. Klemp J, Wilhelmson R (1978) The simulation of three-dimensional convective storm dynamics. J Atmos Sci 35:1070–1096

    Article  Google Scholar 

  182. Knupp PM, Steinberg S (1993) Fundamentals of grid generation. CRC-Press, Boca Raton

    MATH  Google Scholar 

  183. Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes - application to vortex shedding. Comput Methods Appl Mech Eng 193:1367–1383

    Article  MathSciNet  MATH  Google Scholar 

  184. Kopera MA, Giraldo FX (2014) Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations. J Comput Phys 275:92–117

    Article  MathSciNet  Google Scholar 

  185. Kopera MA, Giraldo FX (2014) Mass conservation of the unified continuous and discontinuous element-based Galerkin methods on dynamically adaptive grids with application to atmospheric simulations. J Comput Phys. doi:10.1016/j.jcp.2015.05.010 (to appear)

  186. Kopriva DA (1996) A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method. J Comput Phys 128(2):475–488

    Article  MathSciNet  MATH  Google Scholar 

  187. Krivodonova L (2007) Limiters for high-order discontinuous Galerkin methods. J Comput Phys 226:879–896

    Article  MathSciNet  MATH  Google Scholar 

  188. Kühnlein C, Smolarkiewicz PK, Dörnbrack A (2012) Modelling atmospheric flows with adaptive moving meshes. J Comput Phys 231(7):2741–2763

    Article  MathSciNet  MATH  Google Scholar 

  189. Kwizak M, Robert A (1971) A semi-implicit scheme for grid point atmospheric models of the primitive equations. Mon Weather Rev 99:32–36

    Article  Google Scholar 

  190. Lang J, Cao W, Huang W, Russell RD (2003) A two-dimensional moving finite element method with local refinement based on a posteriori error estimates. Appl Numer Math 46(1):75–94

    Article  MathSciNet  MATH  Google Scholar 

  191. Lanser D, Blom JG, Verwer JG (2001) Time integration of the shallow water equations in spherical geometry. J Comput Phys 171:373–393

    Article  MATH  Google Scholar 

  192. Laprise R (1992) The euler equations of motion with hydrostatic pressure as an independent variable. Mon Weather Rev 120:197–207

    Article  Google Scholar 

  193. Lauter M, Giraldo FX, Handorf D, Dethloff K (2008) A discontinuous Galerkin method for the shallow water equations using spherical triangular coordinates. J Comput Phys 227:10226–10242

    Article  MathSciNet  MATH  Google Scholar 

  194. Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422

    Article  MATH  Google Scholar 

  195. Lee J, Bleck R, MacDonald A, Bao J, Benjamin S, Middlecoff J, Wang N, Brown J (2008) Fim: a vertically flow-following, finite-volume icosahedral model. In: 22nd Conference on weather analysis forecasting/18th conference on numerical weather prediction, Park City, UT, Am Meteorol Soc (preprints)

  196. Lee JLL, MacDonald AE (2009) A finite-volume icosahedral shallow-water model on a local coordinate. Mon Weather Rev 137(4):1422–1437

    Article  Google Scholar 

  197. Leonard A (1974) Energy cascade in large eddy simulations of turbulent fluid flows. Adv Geophys 18:237–248

    Article  Google Scholar 

  198. Lesaint P, Raviart PA (1974) On a finite element method for solving the neutron transport equation. Academic Press, San Diego

    Book  Google Scholar 

  199. Levasseur V, Sagaut P, Chalot F, Davroux A (2006) An entropy-variable-based vms/gls method for the simulation of compressible flows on unstructured grids. Comput Methods Appl Mech Eng 195(9–12):1154–1179. doi:10.1016/j.cma.2005.04.009

  200. Ley GW, Elsberry RL (1976) Forecasts of typhoon irma using a nested grid model. Mon Weather Rev 104:1154

    Article  Google Scholar 

  201. Lilly DK (1962) On the numerical simulation of buoyant convection. Tellus 14:148–172

    Article  Google Scholar 

  202. Lipps F, Hemler R (1982) A scale analysis of deep moist convection and some related numerical calculations. J Atmos Sci 29:2192–2210

    Article  Google Scholar 

  203. Lohner R, Mut F, Jebral J, Aubry R, Houzeaux G (2011) Deflated preconditioned conjugate gradient solvers for the pressure-Poisson equation: extensions and improvements. Int J Numer Methods Fluids 87:2–14

    Article  MathSciNet  MATH  Google Scholar 

  204. Ma H (1993) A spectral element basin model for the shallow water equations. J Comput Phys 109:133–149

    Article  MathSciNet  MATH  Google Scholar 

  205. Maday Y, Mavriplis C, Patera AT (1988) Nonconforming mortar element methods: application to spectral discretizations. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center

  206. Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G, Wergen W (2002) The operational global icosahedral–hexagonal gridpoint model GME: description and high-resolution tests. Mon Weather Rev 130:319–338

    Article  Google Scholar 

  207. Marchuk GI (1974) Numerical methods in weather prediction. Academic Press, San Diego

    Google Scholar 

  208. Marras S (2012) Variational multiscale stabilization of finite and spectral elements for dry and moist atmospheric problems. Ph.D. thesis, Universitat Politécnica de Catalunya

  209. Marras S, Giraldo FX (2015) A parameter-free dynamic alternative to hyper-viscosity for coupled transport equations: application to the simulation of 3D squall lines using spectral elements. J Comput Phys 283:360–373

    Article  MathSciNet  Google Scholar 

  210. Marras S, Kelly JF, Giraldo FX, Vázquez M (2012) Variational multiscale stabilization of high-order spectral elements for the advection–diffusion equation. J Comput Phys 231:7187–7213

    Article  MathSciNet  MATH  Google Scholar 

  211. Marras S, Kopera M, Giraldo FX (2014) Simulation of shallow water jets with a unified element-based continuous/discontinuous Galerkin model with grid flexibility on the sphere. Q J R Meteorol Soc. doi:10.1002/qj.2474

  212. Marras S, Moragues M, Vázquez M, Jorba O, Houzeaux G (2013) A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows. J Comput Phys 236:380–407

    Article  MathSciNet  MATH  Google Scholar 

  213. Marras S, Moragues M, Vázquez MR, Jorba O, Houzeaux G (2013) Simulations of moist convection by a variational multiscale stabilized finite element method. J Comput Phys 252:195–218

    Article  MathSciNet  MATH  Google Scholar 

  214. Marras S, Müller A, Giraldo, FX (2014) An LES-like stabilization of the spectral element solution of the Euler equations for atmospheric flows. In: WCCM XI—ECCM V—ECFD VI, Barcelona, Spain, pp 1–22

  215. Marras S, Müller A, Giraldo FX (2014) Physics-based stabilization of spectral elements for the 3d Euler equations of moist atmospheric convection. In: Proceedings of the ICOSAHOM 2014, LNCS, Salt Lake City, UT. Springer (accepted)

  216. Marras S, Nazarov M, Giraldo FX (2015) A stabilized spectral element method based on a dynamic SGS model for LES. Submitted for review (see pre-print). https://www.researchgate.net/publication/271526242_A_stabilized_spectral_element_method_based_on_a_dynamic_SGS_model_for_LES._Euler_and_non-linear_scalar_equations

  217. Mastin CW, Thompson JF (1978) Transformation of three-dimensional regions onto rectangular regions by elliptic systems. Numer Math 29:397–407

    Article  MathSciNet  MATH  Google Scholar 

  218. McGregor JL, Dix MR (2001) The CSIRO conformal-cubic atmospheric gcm. In: Hodnett PF (ed) IUTAM symposium on advances in mathematical modelling of atmosphere and ocean dynamics. Kluwer, Dordrecht, pp 197–202

    Chapter  Google Scholar 

  219. Mesinger F, Janjic Z, Nickovic S, Gavrilov D, Deaven D (1988) The step-mountain coordinate: model description and performance for cases of alpine lee cyclogenesis and for a case of an appalachian redevelopmen. Mon Weather Rev 116:1493–1518

    Article  Google Scholar 

  220. Miyakoda K, Rosati A (1977) One-way nested grid models: the interface conditions and the numerical accuracy. Mon Weather Rev 105:1092–1107

    Article  Google Scholar 

  221. MMesh3D: a 3D elliptic mesh generation tool for simply connected domains with topography. http://mmesh3d.wikispaces.com/ (2010)

  222. Moragues M, Vázquez M, Houzeaux G, Aubry R (2010) Variational multiscale stabilization of compressible flows in parallel architectures. In: International conference on parallel CFD, Kaoshiung, Taiwan

  223. Morrison H, Grabowski WW (2008) Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J Atmos Sci 65:792–812

    Article  Google Scholar 

  224. Müller A, Behrens J, Giraldo FX, Wirth V (2013) Comparison between adaptive and uniform deiscontinuous Galerkin simulations in 2D dry bubble experiments. J Comput Phys 235:371–393

    Article  MathSciNet  Google Scholar 

  225. Nair RD, Choi HW, Tufo HM (2009) Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Comput Fluids 38(2):309–319

    Article  MathSciNet  MATH  Google Scholar 

  226. Nair RD, Levy MN, Lauritzen PH (2011) Emerging numerical methods for atmospheric modeling. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models. Lecture notes in computational science and engineering, vol 80. Springer, pp 251–311

  227. Nair RD, Thomas SJ, Loft RD (2005) A discontinuous Galerkin global shallow water model. Mon Weather Rev 133:876–888

    Article  Google Scholar 

  228. Nair RD, Thomas SJ, Loft RD (2005) A discontinuous Galerkin transport scheme on the cubed sphere. Mon Weather Rev 133:814–828

    Article  Google Scholar 

  229. Nazarov M, Hoffman J (2013) Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods. Int J Numer Methods Fluids 71:339–357

    Article  MathSciNet  Google Scholar 

  230. Neale RB, Chen C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Morrison H, Cameron-Smith P, Collins WD, Iacono MJ, Easter RC, Ghan SJ, Liu X, Rasch PJ, Taylor MA (2010) Description of the NCAR community atmosphere model (CAM 5.0). Tech. rep., National Center for Atmospheric Research, NCAR

  231. Norman MR (2013) Targeting atmosphjeric simulation algorithms for large, distributed-memory, GPU-accelerated computers. In: Yuen DA, Wang L, Chi X, Johnsson L, Ge W, Shi Y (eds) GPU solutions to multi-scale problems in science and engineering, Lecture notes in earth system sciences. Springer, pp 271–282

  232. Ockendon H, Ockendon JR (2004) Waves and compressible flow. Springer, Berlin

    MATH  Google Scholar 

  233. Ogura Y, Phillips N (1962) Scale analysis of deep and shallow convection in the atmosphere. J Atmos Sci 19:173–179

    Article  Google Scholar 

  234. Ouvrard H, Koobus B, Dervieux A, Salvetti MV (2010) Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput Fluids 39(7):1083–1094. doi:10.1016/j.compfluid.2010.01.017

  235. Patera AT (1984) A spectral method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  Google Scholar 

  236. Persson PO, Peraire J (2006) Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the 44th AIAA aerospace sciences meeting and exhibit AIAA-2006-112

  237. Phillips N (1957) A coordinate system having some special advantages for numerical forecasting. J Meteorol 14:184–185

    Article  Google Scholar 

  238. Pielke R, Cotton W, Walko R, Tremback C, Lyons W, Grasso L, Nicholls M, Moran M, Wesley D, Lee T, Copeland J (1992) A comprehensive meteorological modeling system—RAMS. Metorol Atmos Phys 49:69–91

    Article  Google Scholar 

  239. Piggott P, Pain P, Gorman GJ, Power P, Goddard AJH (2005) h, r, and hr adaptivity with applications in numerical ocean modelling. Ocean Model 10(1–2):95–113

    Article  Google Scholar 

  240. Piomelli U (1993) Application of LES in engineering: an overview. In: Galperin B, Orszag SA (eds) Large eddy simulation of complex engineering and geophysical flows. Cambridge University Press, Cambridge, pp 119–137

    Google Scholar 

  241. Pironneau O, Liou J, Tezduyar T (1992) Characteristic-Galerkin and Galerkin/least-squares space–time formulations for the advection–diffusion equation with time-dependent domains. Comput Methods Appl Mech Eng 100:117–141

    Article  MathSciNet  MATH  Google Scholar 

  242. Priestley A (1992) The Taylor–Galerkin method for the shallow-water equations on the sphere. Mon Weather Rev 120:3003–3015

    Article  Google Scholar 

  243. Proctor FH (1988) The terminal area simulation system, volume I: theoretical formulation. Tech. rep., NASA, Contractor Report 4046, DOT/FAA/PM-85/50

  244. Prusa JM, Smolarkiewicz PK, Wyszogrodzki AA (2008) EULAG, a computational model for multiscale flows. Comput Fluids 37:1193–1207

    Article  MathSciNet  MATH  Google Scholar 

  245. Qaddouri A, Pudykiewicz J, Tanguay M, Girard C, Coté J (2012) Experiments with different discretizations for the shallow-water equations on a sphere. Q J R Meteorol Soc 138:989–1003

    Article  Google Scholar 

  246. Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics, texts in applied mathematics, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  247. Quarteroni A, Valli A (1994) Numerical approximation of partial differential equations. Springer, Berlin

    MATH  Google Scholar 

  248. Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Tech. Rep. 73, Los Alamos Scientific Laboratory—LA-UR-73-479

  249. Restelli M, Giraldo FX (2009) A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling. SIAM J Sci Comput 31:2231–2257

    Article  MathSciNet  MATH  Google Scholar 

  250. Richardson L (1922) Weather prediction by numerical process, 1st edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  251. Rispoli F, Saavedra R (2006) A stabilized finite element method based on sgs models for compressible flows. Comput Methods Appl Mech Eng 196:652–664

    Article  MathSciNet  MATH  Google Scholar 

  252. Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flow with v-sgs stabilization and \(yz\beta \) shock capturing. Int J Numer Methods Fluids 54:695–706

    Article  MathSciNet  MATH  Google Scholar 

  253. Ritz w (1909) über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik. J Reine Angew Math 135:1–61

    MathSciNet  Google Scholar 

  254. Ronquist EM (1996) Convection treatment using spectral elements of different order. Int J Numer Methods Fluids 22:241–264

    Article  MATH  Google Scholar 

  255. Rood RB, Space G, Earth DOTG, Lyster P, Sawyer W, Takacs LL (1997) Design of the goddard earth observing system (geos) parallel general circulation model (gcm)

  256. Room R (2001) Nonhydrostatic adiabatic kernel for hirlam. Part i: Fundamentals of nonhydrostatic dynamics in pressure-related coordinates. Tech. Rep. 25, HIRLAM Technical Report—MeteoFr and Consortium

  257. Room R (2002) Nonhydrostatic adiabatic kernel for hirlam. Part III: semi-implicit eulerian scheme. Tech. Rep. 55, HIRLAM Technical Report—MeteoFr and Consortium

  258. Rosenberg D, Fournier A, Fischer P, Pouquet A (2006) Geophysical–astrophysical spectral-element adaptive refinement (gaspar): object-oriented h-adaptive fluid dynamics simulation. J Comput Phys 215:59–80

    Article  MathSciNet  MATH  Google Scholar 

  259. Russell WS, Eiseman PR (1998) A boundary conforming structured grid for global ocean circulation studies. Int J Numer Methods Fluids 28:761–788

    Article  MATH  Google Scholar 

  260. Sagaut P (2000) Large eddy simulation for incompressible flows. An introduction. Springer, Berlin

    MATH  Google Scholar 

  261. Saito K, Fujita T, Yamada Y, Ishida JI, Kumagai Y, Aranami K, Ohmori S, Nagasawa R, Kumagai S, Muroi C, Kato T, Erro H, Yamazaki Y (2006) The operational JMA nonhydrostatic mesoscale model. Mon Weather Rev 134:1266–1298

    Article  Google Scholar 

  262. Satoh M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S (2008) Nonhydrostatic icosahedral atmospheric model (nicam) for global cloud resolving simulations. J Comput Phys 227:3486–3514

    Article  MathSciNet  MATH  Google Scholar 

  263. Schar C, Leuenberger D, Fuhrer O, Luthic D, Girard C (2002) A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon Weather Rev 130:2459–2480

    Article  Google Scholar 

  264. Schwanenberg D, Kiem R, Kongeter J (2000) Discontinuous Galerkin method for the shallow water equations. Springer, Heidelberg, pp 289–309

    MATH  Google Scholar 

  265. Sert C, Beskok A (2006) Spectral element formulations on non-conforming grids: a comparative study of pointwise matching and integral projection methods. J Comput Phys 211(1):300–325

    Article  MathSciNet  MATH  Google Scholar 

  266. Shahbazi K, Fischer PF, Ethier CR (2007) A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J Comput Phys 222(1):391–407

    Article  MathSciNet  MATH  Google Scholar 

  267. Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89:141–291

    Article  MathSciNet  MATH  Google Scholar 

  268. Simmons A, Burridge D (1981) An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon Weather Rev 109:758–766

    Article  Google Scholar 

  269. Simons T (1968) A three-dimensional spectral prediction equation. J Atmos Sci 127:1–27

    Google Scholar 

  270. Skamarock W, Klemp J (1993) Adaptive grid refinement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow. Mon Weather Rev 121:788–804

    Article  Google Scholar 

  271. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2007) A description of the advanced research WRF version 2. Tech. Rep. 468, NCAR TN STR

  272. Skamarock W, Oliger J, Street RL (1989) Adaptive grid refinement for numerical weather prediction. J Comput Phys 80(1):27–60

    Article  MATH  Google Scholar 

  273. Skamarock WC, Klemp JB, Duda MG, Fowler LD, Park SHH, Ringler TD (2012) A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon Weather Rev 140(9):3090–3105

    Article  Google Scholar 

  274. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiement. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  275. Smolarkiewicz PK, Szmelter J, Wyszogrodzki AA (2013) An unstructured-mesh atmospheric model for nonhydrostatic dynamics. J Comput Phys 254:184–199

    Article  MathSciNet  Google Scholar 

  276. Soong S, Ogura Y (1973) A comparison between axisymmetric abd slab-symmetric cumulus cloud models. J. Atmos. Sci. 30:879–893

    Article  Google Scholar 

  277. Soto O, Lohner R, Camelli F (2003) A linelet preconditioner for incompressible flow solvers. Int J Numer Methods Heat Fluid Flow 13:133–147

    Article  MATH  Google Scholar 

  278. St-Cyr A, Jablonowski C, Dennis JM, Tufo HM, Thomas SJ (2008) A comparison of two shallow-water models with nonconforming adaptive grids. Mon Weather Rev 136:1898–1922

    Article  Google Scholar 

  279. Staniforth A (1984) The application of the finite-element method to meteorological simulations—a review. Int J Numer Methods Fluids 4:1–12

    Article  MathSciNet  MATH  Google Scholar 

  280. Staniforth AN, Mitchell HL (1978) A variable-resolution finite-element technique for regional forecasting with the primitive equations. Mon Weather Rev 106:439–447

    Article  Google Scholar 

  281. Steppeler J, Bitzer H, Bonaventura L (2002) Nonhydrostatic atmospheric modelling using a z-coordinate representation. Mon Weather Rev 130:2143–2149

    Article  Google Scholar 

  282. Steppeler J, Hess R, Schattler U, Bonaventura L (2003) Review of numerical methods for nonhydrostatic weather prediction models. Meteorol Atmos Phys 82:287–301

    Article  Google Scholar 

  283. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Ras S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roechner E (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172

    Article  Google Scholar 

  284. Straka J, Wilhelmson R, Wicker L, Anderson J, Droegemeier K (1993) Numerical solution of a nonlinear density current: a benchmark solution and comparisons. Int J Numer Methods Fluids 17:1–22

    Article  MathSciNet  Google Scholar 

  285. Strang G, Fix GJ (1973) An analysis of the finite element method, vol 212. Wellesley-Cambridge, Wellesley

    MATH  Google Scholar 

  286. Sundqvist H (1976) On vertical interpolation and truncation in connection with the use of sigma system models. Atmosphere 14:37–52

    Google Scholar 

  287. Tabata M (1978) Uniform convergence of the upwind finite element approximation for semilinear parabolic problems. J Math Kyoto Univ 18:327–351

    MathSciNet  MATH  Google Scholar 

  288. Tabata M (1979) Some applications of the upwind finite element method. Theor Appl Mech 27:277–282

    Google Scholar 

  289. Tabata M (1985) Symmetric finite element approximations for convection–diffusion problems. Theor Appl Mech 33:445–453

    MATH  Google Scholar 

  290. Tadmor E (1989) Convergence of spectral methods for nonlinear conservation laws. SIAM J Numer Anal 26:30–44

    Article  MathSciNet  MATH  Google Scholar 

  291. Tanguay M, Robert A, Laprise R (1990) A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon Weather Rev 118:1970–1980

    Article  Google Scholar 

  292. Tapp MC, White PW (1976) A non-hydrostatic mesoscale model. Q J R Meteorol Soc 102:277–296

    Article  Google Scholar 

  293. Tatsumi Y (1983) An economical explicit time integration scheme for a primitive model. J Meteorol Soc Jpn 61:269–287

    Google Scholar 

  294. Taylor M, Tribbia J, Iskandarani M (1997) The spectral element method for the shallow water equations on the sphere. J Comput Phys 130:92–108

    Article  MATH  Google Scholar 

  295. Tezduyar T, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with \(yz\beta \) shock-capturing. Comput Fluids 36:147–159

    Article  MATH  Google Scholar 

  296. Thomas SJ, Loft R (2005) The NCAR spectral element climate dynamical core: semi-implicit Eulerian formulation. J Sci Comput 25:307–322

    Article  MathSciNet  MATH  Google Scholar 

  297. Thompson JF, Mastin CW, Thames FC (1974) Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. J Comput Phys 15(3):299–319

    Article  MATH  Google Scholar 

  298. Thompson JF, Warsi ZUA, Mastin CW (1985) Numerical Grid Generation: foundations and applications. North-Holland, Amsterdam

    MATH  Google Scholar 

  299. Thuburn J (2011) Some basic dynamics relevant to the design of atmospheric model dynamical cores. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric Models, Lecture notes in computational science and engineering, vol 80. Springer, pp 3–27

  300. Thuburn J (2011) Vertical discretizations: some basic ideas. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models, Lecture notes in computational science and engineering, vol 80. Springer, pp 59–74

  301. Thuburn J, Cotter CJ (2015) A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes. J Comput Phys 290:274–297

  302. Toro E (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  303. Tumolo G, Bonaventura L, Restelli M (2013) A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations. J Comput Phys 232:46–67

    Article  MathSciNet  MATH  Google Scholar 

  304. Ullrich P, Jablonowski C (2012) MCore: a non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods. J Comput Phys 231(15):5078–5108

    Article  MathSciNet  MATH  Google Scholar 

  305. Untch A, Hortal M (2004) A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ecmwf forecast model. Q J R Meteorol Soc 130:1505–1530

    Article  Google Scholar 

  306. van der Bos F, van der Vegt JJ, Geurts BJ (2007) A multiscale formulation for compressible turbulent flow suitable for general variational discretization techniques. Comput Methods Appl Mech Eng 196:2863–2875

    Article  MATH  Google Scholar 

  307. Vandeven H (1991) Family of spectral filters for discontinuous problems. J Sci Comput 6:159–192

  308. Vázquez M, Houzeaux G, Korik S, Artigues A, Aguado-Sierra J, Aris R, Mira D, Calet H, Cucchietti F, Owen H, Taha A, Cela JM (2014) Alya: towards exascale for engineering simulation codes. arXiv:1404.4881

  309. Walko RL, Avissar R (2008) The ocean–land–atmosphere model (OLAM). Part I: shallow-water tests. Mon Weather Rev 136:4033–4044

    Article  Google Scholar 

  310. Walko RL, Avissar R (2008) The ocean–land–atmosphere model (OLAM). Part II: formulation and tests of the nonydrostatic dynamic core. Mon Weather Rev 136:4045–4064

    Article  Google Scholar 

  311. Wan H, Giorgetta MA, Zängl G, Restelli M, Majewski D, Bonaventura L, Fröhlich K, Reinert D, Rípodas P, Kornblueh L (2013) The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids—part 1: formulation and performance of the baseline version. Geosci Model Dev Disc 6:59–119

    Article  Google Scholar 

  312. Warburton TC, Karniadakis GE (1999) A discontinuous Galerkin method for the viscous MHD equations. J Comput Phys 152(2):608–641

    Article  MathSciNet  MATH  Google Scholar 

  313. Weller H, Shahrokhi A (2014) Curl free pressure gradients over orography in a solution of the fully compressibe Euler equations with implicit treatment of acoustic and gravity waves. Tech. rep., U. Reading, UK

  314. Weller H, Lock SJ, Wood N (2013) Runge–Kutta IMEX schemes for the horizontally explicit/vertically implicit (HEVI) solution of wave equations. J Comput Phys 252:365–381

    Article  MathSciNet  Google Scholar 

  315. Weller H, Ringler T, Piggott M, Wood N (2010) Challenges facing adaptive mesh modeling of the atmosphere and ocean. Bull Am Meteorol Soc 91:105–108

    Article  Google Scholar 

  316. Weller H, Weller H, Fournier A (2009) Voronoi, Delaunay, and block-structured mesh refinement for solution of the shallow-water equations on the sphere. Mon Weather Rev 137:4208–4224

    Article  Google Scholar 

  317. White AA, Hoskins BJ, Roulstone I, Staniforth A (2005) Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q J R Meteorol Soc 131:2081–2107

    Article  Google Scholar 

  318. Wicker L, Skamarock W (1998) A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon Weather Rev 126:1992–1999

    Article  Google Scholar 

  319. Wicker L, Skamarock W (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130:2088–2097

    Article  Google Scholar 

  320. Wilcox LC, Stadler G, Burstedde C, Ghattas O (2010) A high-order discontinuous Galerkin method for wave propagation through coupled elastic–acoustic media. J Comput Phys 229(24):9373–9396

    Article  MathSciNet  MATH  Google Scholar 

  321. Williamson D (2007) The evolution of dynamical cores for global atmospheric models. J Meteorol Soc Jpn 85B:241–269

    Article  Google Scholar 

  322. Wood N, Staniforth A, White A, Allen T, Diamantakis M, Gross M, Melvin T, Smith C, Vosper S, Zerroukat M, Thuburn J (2014) An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q J R Meteorol Soc 140:1505–1520

    Article  Google Scholar 

  323. Xue M, Droegemeier K, Wong V (2000) The advanced regional prediction system (arps)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part i: model dynamics and verification. Meteorol Atmos Phys 75:161–193

    Article  Google Scholar 

  324. Yang H (1985) Finite element structural analysis, international series in civil engineering and engineering mechanics, 1st edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  325. Yang X, Hu J, Chen D, Zhang H, Shen X, Chen J, Ji L (2008) Verification of GRAPES unified global and regional numerical weather prediction model dynamic core. Chin Sci Bull 53:3458–3464

    Google Scholar 

  326. Yeh K, Coté J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (2002) The CMC-MRB global environmental multiscale GEM model. Part III: nonhydrostatic formulation. Mon Weather Rev 130:339–356

    Article  Google Scholar 

  327. Yelash L, Müller A, Lukáčová-Medvid’ová M, Giraldo FX, Wirth V (2014) Adaptive discontinuous evolution Galerkin method for dry atmospheric flow. J Comput Phys 268:106–133

    Article  MathSciNet  Google Scholar 

  328. Yu M, Giraldo FX, Peng M, Wang ZJ (2014) Localized artificial viscosity stabilization of discontinuous Galerkin m, ehods for nonhydrostatic mesoscale atmospheric modeling. Technical report, Kansas University

  329. Zhang DL, Chang HR, Seaman NL, Warner TT, Fritsch JM (1986) A two-way interactive nesting procedure with variable terrain resolution. Mon Weather Rev 114:1330–1339

    Article  Google Scholar 

  330. Zhao M, Held I, Lin S, Vecchi G (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–6678

    Article  Google Scholar 

  331. Zienkiewcz O, Nithiarasu P, Codina R, Vázquez M, Ortiz P (1999) The characteristic-based split procedure: an efficient and accurate algorithm for fluid problems. Int J Numer Methods Fluids 31:359–392

    Article  MathSciNet  MATH  Google Scholar 

  332. Zienkiewicz O, Codina R (1995) A general algorithm for compressible and incompressible flow—part i. The split, characteristic-based scheme. Int J Numer Methods Fluids 20:869–885

    Article  MathSciNet  MATH  Google Scholar 

  333. Zienkiewicz O, Taylor R, Nithiarasu P (2005) The finite element method for fluid dynamics, 6th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  334. Zingan V, Guermond JL, Morel J, Popov B (2013) Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput Methods Appl Math Eng 253:479–490

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Eugenio Oñate (U. Politècnica de Catalunya) for his invitation to submit this review article. They are also thankful to Prof. Dale Durran (U. Washington), Dr. Tommaso Benacchio (Met Office), and Dr. Matias Avila (BSC-CNS) for their comments and corrections, as well as insightful discussion with Sam Watson, Consulting Software Engineer (Exa Corp.). Most of the contribution to this article by the first author stems from his Ph.D. thesis carried out at the Barcelona Supercomputing Center (BSC-CNS) and Universitat Politècnica de Catalunya, Spain, supported by a BSC-CNS student grant, by Iberdrola Enrgías Renovables, and by Grant N62909-09-1-4083 of the Office of Naval Research Global. At N.P.S., S.M., A.M., M.K., and F.X.G. were supported by the Office of Naval Research through program element PE-0602435N, the Air Force Office of Scientific Research through the Computational Mathematics program, and the National Science Foundation (Division of Mathematical Sciences) through program element 121670. The scalability studies of the atmospheric model NUMA that are presented in this paper used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. S.M., M.K., and A.M. are grateful to the National Research Council of the National Academies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Marras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marras, S., Kelly, J.F., Moragues, M. et al. A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin. Arch Computat Methods Eng 23, 673–722 (2016). https://doi.org/10.1007/s11831-015-9152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9152-1

Navigation