Skip to main content
Log in

Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this work, we analyze a recently proposed stabilized finite element formulation for the approximation of the resistive magnetohydrodynamics equations. The novelty of this formulation with respect to existing ones is the fact that it always converges to the physical solution, even when it is singular. We have performed a detailed stability and convergence analysis of the formulation in a simplified setting. From the convergence analysis, we infer that a particular type of meshes with a macro-element structure is needed, which can be easily obtained after a straight modification of any original mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In any case, we can always project the continuous fields into the FE spaces using proper projections.

  2. We note that the continuous problem is singular for \(\mathrm{Rm} = \infty \). High magnetic Reynolds numbers appear in astrophysical simulations. However, these simulations always involve transient systems, i.e. the ideal MHD system (\(\mathrm{Rm} = \infty \)) cannot be stated in steady form. Even though the numerical analysis in this work has been restricted to the steady case for simplicity, the method has been conceived and numerically tested for the transient problem [7]. The first value in \(\tau _3\) does not blow up for \(\mathrm{Rm} = \infty \) when applied to transient problem, since it will include a time-step size \(\delta t\) dependency when using a quasi-static approach or a dynamic subgrid stabilization will be used (see [23] for details).

  3. The analysis for non-degenerate meshes and variable stabilization parameters introduces some additional technicalities. We refer to [4, 20] for the numerical analysis of stabilized FE discretizations of Navier–Stokes and Maxwell problems respectively, in this more general setting.

References

  1. Amrouche C, Bernardi C, Dauge M, Girault V (1998) Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci 21(9):823–864

    Article  MATH  MathSciNet  Google Scholar 

  2. Armero F, Simo JC (1996) Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput Methods Appl Mech Eng 131(1–2):41–90

    Article  MATH  MathSciNet  Google Scholar 

  3. Aydın SH, Nesliturk AI, Tezer-Sezgin M (2010) Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations. Int J Numer Methods Fluids 62(2):188–210

    MATH  Google Scholar 

  4. Badia S, Codina R (2009) Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J Numer Anal 47(3):1977–2000

    Article  MathSciNet  Google Scholar 

  5. Badia S, Codina R (2011) A combined nodal continuous–discontinuous finite element formulation for the Maxwell problem. Appl Math Comput 218(8):4276–4294

    Article  MATH  MathSciNet  Google Scholar 

  6. Badia S, Codina R (2012) A nodal-based finite element approximation of the Maxwell problem suitable for singular solutions. SIAM J Numer Anal 50(2):398–417

    Article  MATH  MathSciNet  Google Scholar 

  7. Badia S, Codina R, Planas R (2013) On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J Comput Phys 234:399–416

    Article  MATH  MathSciNet  Google Scholar 

  8. Badia S, Planas R, Gutiérrez-Santacreu JV (2013) Unconditionally stable operator splitting algorithms for the incompressible magnetohy drodynamics system discretized by a stabilized finite element formulation based on projections. Int J Numer Methods Eng 93(3):302–328

    Article  Google Scholar 

  9. Belenli MA, Kaya S, Rebhols LG, Wilson NE (2013) A subgrid stabilization finite element method for incompressible magnetohydrodynamics. Int J Comput Math 90(7):1506–1523

  10. Ben Salah N, Soulaimani A, Habashi WG (2001) A finite element method for magnetohydrodynamics. Comput Methods Appl Mech Eng 190(43–44):5867–5892

    Article  MATH  MathSciNet  Google Scholar 

  11. Ben Salah N, Soulaimani A, Habashi WG, Fortin M (1999) A conservative stabilized finite element method for the magneto-hydrodynamic equations. Int J Numer Methods Fluids 29(5):535–554

    Article  MATH  Google Scholar 

  12. Boffi D (2010) Finite element approximation of eigenvalue problems. Acta Numer 19:1–120

    Article  MATH  MathSciNet  Google Scholar 

  13. Bonito A, Guermond J (2011) Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements. Math Comput 80:1887–1910

    Article  MATH  MathSciNet  Google Scholar 

  14. Boulton L, Strauss M (2012) Eigenvalue enclosures and convergence for the linearized MHD operator. BIT Numer Math 52(4):801–825

    Article  MATH  MathSciNet  Google Scholar 

  15. Bramble JH, Kolev TV, Pasciak JE (2005) The approximation of the Maxwell eigenvalue problem using a least-squares method. Math Comput 74(252):1575–1598

    Article  MATH  MathSciNet  Google Scholar 

  16. Bramble JH, Pasciak JE (2004) A new approximation technique for div-curl systems. Math Comput 73(248):1739–1762

    Article  MATH  MathSciNet  Google Scholar 

  17. Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Buffa A, Ciarlet P Jr, Jamelot E (2009) Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. Numer Math 113(4):497–518

    Article  MATH  MathSciNet  Google Scholar 

  20. Codina R (2008) Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl Numer Math 58:264–283

    Article  MATH  MathSciNet  Google Scholar 

  21. Codina R, Hernández N (2006) Stabilized finite element approximation of the stationary MHD equations. Comput Mech 38:344–355

    Article  MATH  MathSciNet  Google Scholar 

  22. Codina R, Hernández N (2011) Approximation of the thermally coupled MHD problem using a stabilized finite element method. J Comput Phys 230(4):1281–1303

    Article  MATH  MathSciNet  Google Scholar 

  23. Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196(21–24):2413–2430

    Article  MATH  MathSciNet  Google Scholar 

  24. Costabel M (1991) A coercive bilinear form for Maxwell’s equations. J Math Anal Appl 157(2):527–541

    Article  MATH  MathSciNet  Google Scholar 

  25. Costabel M, Dauge M (2002) Weighted regularization of Maxwell equations in polyhedral domains. Numer Math 93(2):239–277

    Article  MATH  MathSciNet  Google Scholar 

  26. Cyr EC, Shadid JN, Tuminaro RS, Pawlowski RP, Chacón L (2013) A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J Sci Comput 35(3):B701–B730

    Article  MATH  Google Scholar 

  27. Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Duan H-Y, Jia F, Lin P, Tan RCE (2009) The local \(L^2\) projected \(C^0\) finite element method for Maxwell problem. SIAM J Numer Anal 47(2):1274–1303

    Article  MATH  MathSciNet  Google Scholar 

  29. Ern A, Guermond JL (2004) Theory and practice of finite elements. Springer, New York

    Book  MATH  Google Scholar 

  30. Gerbeau J-F (2000) A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer Math 87:83–111

    Article  MATH  MathSciNet  Google Scholar 

  31. Gerbeau JF, Le Bris C, Lelièvre T (2006) Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  32. Greif C, Li D, Schotzau D, Wei X (2010) A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput Methods Appl Mech Eng 199(45–48):2840–2855

    Article  MATH  MathSciNet  Google Scholar 

  33. Gunzburger MD, Meir AJ, Peterson JP (1991) On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math Comput 56:523–563

    Article  MATH  MathSciNet  Google Scholar 

  34. Hasler U, Schneebeli A, Schötzau D (2004) Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl Numer Math 51:19–45

    Article  MATH  MathSciNet  Google Scholar 

  35. Hazard C, Lenoir M (1996) On the solution of time-harmonic scattering problems for Maxwell’s equations. SIAM J Math Anal 27(6):1597–1630

  36. Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the Trilinos project. ACM Trans Math Softw 31(3):397–423

    Article  MATH  MathSciNet  Google Scholar 

  37. Heroux MA, Willenbring JM (2003) Trilinos users guide. Technical Report SAND2003-2952, Sandia National Laboratories

  38. Houston P, Schötzau D, Wei X (2009) A mixed DG method for linearized incompressible magnetohydrodynamics. J Sci Comput 40:281–314

    Article  MATH  MathSciNet  Google Scholar 

  39. Hsieh P-W, Yang S-Y (2009) A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high hartmann numbers. J Comput Phys 228:8301–8320

    Article  MATH  MathSciNet  Google Scholar 

  40. Monk P (2003) Finite element methods for Maxwell’s equations. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  41. Powell MJD, Sabin MA (1977) Piecewise quadratic approximations on triangles. ACM Trans Math Softw 3(4):316–325

    Article  MATH  MathSciNet  Google Scholar 

  42. Schötzau D (2004) Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer Math 96:771–800

    Article  MATH  MathSciNet  Google Scholar 

  43. Shadid JN, Pawlowski RP, Banks JW, Chacon L, Lin PT, Tuminaro RS (2010) Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J Comput Phys 229(20):7649–7671

    Article  MATH  MathSciNet  Google Scholar 

  44. Sorokina T, Worsey AJ (2008) A multivariate Powell–Sabin interpolant. Adv Comput Math 29(1):71–89

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Planas.

Additional information

The work of the first and third authors was funded by the European Research Council under the FP7 Programme Ideas through the Starting Grant No. 258443—COMFUS: Computational Methods for Fusion Technology and the project FUSSIM, Ref. ENE2011-28556, from the Spanish Government. The second author has been partially supported by the Consolider-Ingenio project TECNOFUS, Ref. CSD2008-00079, from the Spanish Ministry of Science and Innovation, and from the ICREA Acadèmia Program, from the Catalan Government. Finally, the third author would like to acknowledge the support received from the Universitat Politècnica de Catalunya (UPC) and from the Col.legi d’Enginyers de Camins, Canals i Ports de Catalunya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badia, S., Codina, R. & Planas, R. Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics. Arch Computat Methods Eng 22, 621–636 (2015). https://doi.org/10.1007/s11831-014-9129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9129-5

Keywords

Navigation