Skip to main content
Log in

Adaptive Embedded/Immersed Unstructured Grid Techniques

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Embedded mesh, immersed body or ficticious domain techniques have been used for many years as a way to discretize geometrically complex domains with structured grids. The use of such techniques within adaptive, unstructured grid solvers is relatively recent. The combination of body-fitted functionality for some portion of the domain, together with embedded mesh or immersed body functionality for another portion of the domain offers great advantages, which are increasingly being exploited. The present paper reviews the methodology from an implementational perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftosmis MJ, Berger MJ, Adomavicius G (2000) A parallel multilevel method for adaptively refined Cartesian grids with embedded boundaries. AIAA-00-0808

  2. Angot P, Bruneau C-H, Fabrie P (1999) A penalization method to take into account obstacles in incompressible viscous flows. Numer Math 81:497–520

    Article  MATH  Google Scholar 

  3. Baaijens FPT (2001) A ficticious domain/mortar element method for fluid-structure interaction. Int J Numer Methods Fluids 35:734–761

    Article  Google Scholar 

  4. Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comp Fluids 33:375–404

    Article  MATH  Google Scholar 

  5. Baum JD, Luo H, Löhner R (1995) Validation of a new ALE, adaptive unstructured moving body methodology for multi-store ejection simulations. AIAA-95-1792

  6. Baum JD, Luo H, Löhner R, Yang C, Pelessone D, Charman C (1996) A coupled fluid/structure modeling of shock interaction with a truck. AIAA-96-0795

  7. Baum JD, Luo H, Löhner R, Goldberg E, Feldhun A (1997) Application of unstructured adaptive moving body methodology to the simulation of fuel tank separation from an F-16 C/D fighter. AIAA-97-0166

  8. Baum JD, Luo H, Mestreau E, Löhner R, Pelessone D, Charman C (1999) A coupled CFD/CSD methodology for modeling weapon detonation and fragmentation. AIAA-99-0794

  9. Baum JD, Mestreau E, Luo H, Löhner R, Pelessone D, Charman C (2003) Modeling structural response to blast loading using a coupled CFD/CSD methodology. In: Proc des an prot struct impact/impulsive/shock loads (DAPSIL), Tokyo, Japan, December, 2003

  10. Bertrand F, Tanguy PA, Thibault F (1997) Three-dimensional ficticious domain method for incompressible fluid flow problems. Int J Numer Methods Fluids 25:136–719

    Article  Google Scholar 

  11. Camelli F, Löhner R (2006) VLES study of flow and dispersion patterns in heterogeneous urban areas. AIAA-06-1419

  12. Cebral JR, Löhner R (2001) From medical images to anatomically accurate finite element grids. Int J Numer Methods Eng 51:985–1008

    Article  MATH  Google Scholar 

  13. Cebral JR, Löhner R (2005) Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans Med Imaging 24(4):468–476

    Article  Google Scholar 

  14. Cho Y, Boluriaan S, Morris P (2006) Immersed boundary method for viscous flow around moving bodies. AIAA-06-1089

  15. Clarke DK, Hassan HA, Salas MD (1985) Euler calculations for multielement airfoils using Cartesian grids. AIAA-85-0291

  16. Cook BK, Jensen RP (eds) (2002) Discrete element methods. ASCE

  17. Dadone A, Grossman B (2002) An immersed boundary methodology for inviscid flows on Cartesian grids. AIAA-02-1059

  18. Del Pino S, Pironneau O (2001) Fictitious domain methods and Freefem3d. In: Proc ECCOMAS CFD conf, Swansea, Wales

  19. de Zeeuw D, Powell K (1991) An adaptively-refined Cartesian mesh solver for the Euler equations. AIAA-91-1542

  20. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60

    Article  MATH  Google Scholar 

  21. George PL, Borouchaki H (1998) Delaunay triangulation and meshing. Hermes, Paris

    MATH  Google Scholar 

  22. Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3-D, geometrically complex moving objects. J Comput Phys 207:457–492

    Article  MATH  Google Scholar 

  23. Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Comput Phys 191(2):660–669

    Article  MATH  Google Scholar 

  24. Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/ficticious domain method for particulate flows. Int J Multiph Flow 25(5):755–794

    Article  Google Scholar 

  25. Glowinski R, Pan TW, Periaux J (1994) A ficticious domain method for external incompressible flow modeled by the Navier-Stokes equations. Comput Methods Appl Mech Eng 112(4):133–148

    Article  MATH  Google Scholar 

  26. Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105:354366

    Article  Google Scholar 

  27. Karman SL (1995) SPLITFLOW: a 3-D unstructured Cartesian/prismatic grid CFD code for complex geometries. AIAA-95-0343

  28. Kim J, Kim D, Choi H (2001) An immersed-boundary finite-volume method for simulation of flow in complex geometries. J Comput Phys 171:132–150

    Article  MATH  Google Scholar 

  29. Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160:132–150

    Article  Google Scholar 

  30. Landsberg AM, Boris JP (1997) The virtual cell embedding method: a simple approach for gridding complex geometries. AIAA-97-1982

  31. LeVeque RJ, Calhoun D (2001) Cartesian grid methods for fluid flow in complex geometries. In: Fauci LJ (ed) Computational modeling in biological fluid dynamics. IMA volumes in mathematics and its applications, vol 124. Springer, New York, pp 117–143

    Google Scholar 

  32. LeVeque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31:1019–1044

    Article  MATH  Google Scholar 

  33. Löhner R (1998) Computational aspects of space-marching. AIAA-98-0617

  34. Löhner R (2001) Applied CFD techniques. Wiley, New York

    Google Scholar 

  35. Löhner R, Baum JD (1992) Adaptive H-refinement on 3-D unstructured grids for transient problems. Int J Numer Methods Fluids 14:1407–1419

    Article  MATH  Google Scholar 

  36. Löhner R, Oñate E (2004) A general advancing front technique for filling space with arbitrary objects. Int J Numer Methods Eng 61:1977–1991

    Article  MATH  Google Scholar 

  37. Löhner R, Yang C, Baum JD, Luo H, Pelessone D, Charman C (1999) The numerical simulation of strongly unsteady flows with hundreds of moving bodies. Int J Numer Methods Fluids 31:113–120

    Article  MATH  Google Scholar 

  38. Löhner R, Yang C, Cebral J, Baum JD, Luo H, Mestreau E, Pelessone D, Charman C (1999) Fluid-structure interaction algorithms for rupture and topology change. In: Proc 1999 JSME computational mechanics division meeting, Matsuyama, Japan, November, 1999

  39. Löhner R, Baum JD, Mestreau E, Sharov D, Charman C, Pelessone D (2004) Adaptive embedded unstructured grid methods. Int J Numer Methods Eng 60:641–660

    Article  MATH  Google Scholar 

  40. Löhner R, Baum JD, Mestreau EL (2004) Advances in adaptive embedded unstructured grid methods. AIAA-04-0083

  41. Löhner R, Baum JD, Eric EL, Mestreau L, Rice D (2007) Comparison of body-fitted, embedded and immersed 3-D Euler predictions for blast loads on columns. AIAA-07-1133

  42. Melton JE, Berger MJ, Aftosmis MJ (1993) 3-D applications of a Cartesian grid Euler method. AIAA-93-0853-CP

  43. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  Google Scholar 

  44. Mohd-Yusof J (1997) Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: CTR annual research briefs, NASA Ames Research Center/Stanford Univ, pp 317–327

  45. Morino H, Nakahashi K (1999) Space-marching method on unstructured hybrid grid for supersonic viscous flows. AIAA-99-0661

  46. Nakahashi K, Saitoh E (1996) Space-marching method on unstructured grid for supersonic flows with embedded subsonic regions. AIAA-96-0418; see also AIAA J 35(8):1280–1285 (1997)

    Google Scholar 

  47. Patankar NA, Singh P, Joseph DD, Glowinski R, Pan TW (1999) A new formulation of the distributed Lagrange multiplier/ficticious domain method for particulate flows. Int J Multiph Flow. April, 1999

  48. Pember RB, Bell JB, Colella P, Crutchfield WY, Welcome ML (1995) An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J Comput Phys 120:278

    Article  MATH  Google Scholar 

  49. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MATH  Google Scholar 

  50. Quirk JJ (1994) A Cartesian grid approach with hierarchical refinement for compressible flows. NASA CR-194938, ICASE Report No 94-51

  51. Roma AM, Peskin CS, Berger MJ (1995) An adaptive version of the immersed boundary method. J Comput Phys 153:509–534

    Article  Google Scholar 

  52. Sharov D, Luo H, Baum JD, Löhner R (2000) Time-accurate implicit ALE algorithm for shared-memory parallel computers. In: First international conference on computational fluid dynamics, Kyoto, Japan, July 10–14, 2000

  53. Schlichting H (1979) Boundary layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  54. Tsuboi K, Miyakoshi K, Kuwahara K (1991) Incompressible flow simulation of complicated boundary problems with rectangular grid system. Theor Appl Mech 40:297–309

    Google Scholar 

  55. Turek S (1999) Efficient solvers for incompressible flow problems. Springer lecture notes in computational science and engineering, vol 6. Springer, New York

    MATH  Google Scholar 

  56. Tyagi M, Acharya S (2005) Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method. Int J Numer Methods Fluids 48:691–722

    Article  MATH  Google Scholar 

  57. vande Voorde J, Vierendeels J, Dick E (2004) Flow simulations in rotary volumetric pumps and compressors with the ficticious domain method. J Comput Appl Math 168:491–499

    Article  MATH  Google Scholar 

  58. Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys 215:12–40

    Article  MATH  Google Scholar 

  59. Ye T, Mittal R, Udaykumar HS, Shyy W (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156:209–240

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainald Löhner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löhner, R., Cebral, J.R., Camelli, F.F. et al. Adaptive Embedded/Immersed Unstructured Grid Techniques. Arch Computat Methods Eng 14, 279–301 (2007). https://doi.org/10.1007/s11831-007-9008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-007-9008-4

Keywords

Navigation