Skip to main content
Log in

The immunological dependence of plant-feeding animals on their host’s medical properties may explain part of honey bee colony losses

  • Forum Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The honey bee (Apis mellifera) is an important pollinator of agricultural and horticultural crops, but also of wild flowers. The species has been facing declines in many areas of the world, the causes being identified as multifactorial. Recently, it has been theorised that some plant-dwelling animals may develop a dependence on the medicinal properties of their hots plant’s secondary metabolites. Here, the question of honey bee self-medication using organic materials, namely propolis, nectar, honey, honeydew, pollen, wood, and algae for self-medication is addressed. Self-medication in honey bees is a largely unexplored area and thus a comprehensive overview of the field is provided. Prior studies suggest that recent honey bee colony declines are driven by decreased forage plant availability. The problem is expanded and it is suggested, that if honey bees developed a dependence on medical properties of some disappearing plants or materials, this could explain a part of the colony losses observed around the world. To date, convincing evidence points towards self-medication with honey and propolis. Bees also contact plant secondary metabolites, fatty acids, essential oils, and microorganisms that are active against the causative agents of American foulbrood, European foulbrood, nosemosis, chalkbrood, stonebrood, and varroasis. In the future, selected taxa of plants with medicinal properties may be planted to boost honey bee health without chemotherapy. Future directions of research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott J (2014) Self-medication in insects: current evidence and future perspectives. Ecol Entomol. doi:10.1111/een.12110

    Google Scholar 

  • Abrol DP (2012) Honey bee and crop pollination. In: Abrol DP (ed) Pollination biology, 1st edn. Springer, Dordrecht, pp 85–110

    Chapter  Google Scholar 

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos. doi:10.1034/j.1600-0706.2000.910301.x

    Google Scholar 

  • Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Lett. doi:10.1098/rsbl.2009.0986

    PubMed  PubMed Central  Google Scholar 

  • Alippi AM, Ringuelet JA, Cerimele EL, Re MS, Henning CP (1996) Antimicrobial activity of some essential oils against Paenibacillus larvae, the causal agent of American foulbrood disease. J Herbs Spices Med Plants. doi:10.1300/J044v04n02_03

    Google Scholar 

  • Al-Waili NS (2004) Investigating the antimicrobial activity of natural honey and its effects on the pathogenic bacterial infections of surgical wounds and conjunctiva. J Med Food. doi:10.1089/1096620041224139

    Google Scholar 

  • Anthony WE, Palmer-Young EC, Leonard AS, Irwin RE, Adler LS (2015) Testing dose-dependent effects of the nectar alkaloid anabasine on trypanosome parasite loads in adult bumble bees. PLoS ONE. doi:10.1371/journal.pone.0142496

    Google Scholar 

  • Baracchi D, Brown MJ, Chittka L (2015) Weak and contradictory effects of self-medication with nectar nicotine by parasitized bumblebees. F1000Research. doi:10.12688/f1000research.6262.3

  • Biller OM, Adler LS, Irwin RE, McAllister C, Palmer-Young EC (2015) Possible synergistic effects of thymol and nicotine against Crithidia bombi parasitism in bumble bees. PLoS ONE. doi:10.1371/journal.pone.0144668

    Google Scholar 

  • Boudegga H, Boughalleb N, Barbouche N, Ben Hamouda MH, Mahjoub ME (2010) In vitro inhibitory actions of some essential oils on Ascosphaera apis, a fungus responsible for honey bee chalkbrood. J Apic Res. doi:10.3896/IBRA.1.49.3.02

    Google Scholar 

  • Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie. doi:10.1051/apido/2010012

    Google Scholar 

  • Brown JPH (1879) Bee forage in the south. Am Bee J 15:500–502

    Google Scholar 

  • Büdel A (1957) Fysikální pochody výměny vzduchu v česně. Odborné překlady 3:24–30

    Google Scholar 

  • Bzdil J (2010) Occurrence of Paenibacillus larvae in bee debris and honey. Veterinářství 8:469–472

    Google Scholar 

  • Costa C, Lodesani M, Maistrello L (2010) Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie. doi:10.1051/apido/2009070

  • Cremer S, Armitage SA, Schmid-Hempel P (2007) Social immunity. Curr Biol. doi:10.1016/j.cub.2007.06.008

    Google Scholar 

  • Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet J-L, Alaux C (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter. PLoS ONE. doi:10.1371/journal.pone.0072016

    Google Scholar 

  • Ellis JD, Evans JD, Pettis J (2010) Colony losses, managed colony population decline, and colony collapse disorder in the United States. J Apic Res. doi:10.3896/IBRA.1.49.1.30

    Google Scholar 

  • Erler S, Moritz RFA (2015) Pharmacophagy and pharmacophory: mechanisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie. doi:10.1007/s13592-015-0400-z

    Google Scholar 

  • Erler S, Denner A, Bobiş O, Forsgren E, Moritz RF (2014) Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera. Ecol Evol. doi:10.1002/ece3.1252

    PubMed  PubMed Central  Google Scholar 

  • Ertürk Ö, Yavuz C, Sirali R (2014) The antimicrobial activity of propolis from Ordu province of Turkey. Mellifera 14:11–16

    Google Scholar 

  • Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol. doi:10.1111/j.1365-2583.2006.00682.x

    Google Scholar 

  • Feldlaufer MF, Lusby WR, Knox DA, Shimanuki H (1993a) Isolation and identification of linoleic acid as an antimicrobial agent from the chalkbrood fungus, Ascosphaera apis. Apidologie. doi:10.1051/apido:19930201

    Google Scholar 

  • Feldlaufer MF, Lusby WR, Knox DA, Shimanuki H (1993b) Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood disease. Apidologie. doi:10.1051/apido:19930202

    Google Scholar 

  • Flesar J, Havlik J, Kloucek P, Rada V, Titera D, Bednar M, Stropnicky M, Kokoska L (2010) In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Vet Microbiol. doi:10.1016/j.vetmic.2010.03.018

    PubMed  Google Scholar 

  • Forsgren E, Olofsson TC, Vásquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie. doi:10.1051/apido/2009065

    Google Scholar 

  • Fuselli SR, de la Rosa SBG, Gende LB, Eguaras MJ, Fritz R (2006) Antimicrobial activity of some Argentinean wild plant essential oils against Paenibacillus larvae larvae, causal agent of American foulbrood (AFB). J Apic Res. doi:10.1080/00218839.2006.11101304

    Google Scholar 

  • Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. doi:10.1016/j.ecolecon.2008.06.014

    Google Scholar 

  • Gashout HA, Guzmán-Novoa E (2009) Acute toxicity of essential oils and other natural compounds to the parasitic mite, Varroa destructor, and to larval and adult worker honey bees (Apis mellifera L.). J Apic Res. doi:10.3896/IBRA.1.48.4.06

    Google Scholar 

  • Gherman BI, Denner A, Bobiş O, Dezmirean DS, Mărghitaş LA, Schlüns H, Erler S (2014) Pathogen-associated self-medication behavior in the honeybee Apis mellifera. Behav Ecol Sociobiol. doi:10.1007/s00265-014-1786-8

    Google Scholar 

  • Goodwin M (2013) A New Zealand history of toxic honey. Lulu.com, Raleigh

    Google Scholar 

  • Grziwa J (1957) Co se odehrává v česně v zimě. Odborné překlady 3:27–29

    Google Scholar 

  • Haaland C, Naisbit RE, Bersier LF (2011) Sown wildflower strips for insect conservation: a review. Insect Conserv Diver. doi:10.1111/j.1752-4598.2010.00098.x

    Google Scholar 

  • Horn H (1985) The causes of black disease of the honey bee. I. The influence of mineral content in honeydew honeys. Apidologie. doi:10.1051/apido:19850204

    Google Scholar 

  • Hornitzky MAZ (2003) Fatty acids-an alternative control strategy for honeybee diseases: a report for the rural industries research and development corporation. Rural Industries Research and Development Corporation, Barton

    Google Scholar 

  • Hubert J, Nesvorna M, Kamler M, Kopecky J, Tyl J, Titera D, Stara J (2014) Point mutations in the sodium channel gene conferring tau-fluvalinate resistance in Varroa destructor. Pest Manag Sci. doi:10.1002/ps.3679

    Google Scholar 

  • Ingle S (1988) Mycotopia: Paul Stamets is perfecting the art of mushroom cultivation. Harrowsmith Magazine 3(15):68–73

    Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot. doi:10.1016/S0261-2194(00)00079-X

    Google Scholar 

  • Kacániová M, Vuković N, Chlebo R, Haščík P, Rovna K, Cubon J, Pasternakiewicz A (2012) The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Arch Biol Sci. doi:10.2298/ABS1203927K

    Google Scholar 

  • Kaznowski A, Szymas B, Jazdzinska E, Kazimierczak M, Paetz H, Mokracka J (2005) The effects of probiotic supplementation on the content of intestinal microflora and chemical composition of worker honey bees (Apis mellifera). J Apicu Res. doi:10.1080/00218839.2005.11101139

    Google Scholar 

  • Kloucek P, Smid J, Flesar J, Havlik J, Titera D, Rada V, Drabek O, Kokoska L (2012) In vitro inhibitory activity of essential oil vapors against Ascosphaera apis. Nat Prod Commun 7:253–256

    CAS  PubMed  Google Scholar 

  • Kokeš O (1982) Vývoj lesního hospodářství na Benešovsku od konce 19. století. Sborník vlastivědných prací z Podblanicka 23:21–32

  • Lavie P (1960) Les substances antibactériennes dans las colonie d’abeilles (Apis mellifica L.). Ann. Abeille 3:103–183

    Article  CAS  Google Scholar 

  • Manning R (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee World. doi:10.1080/0005772X.2001.11099504

    Google Scholar 

  • Manning R, Harvey M (2002) Fatty acids in honeybee-collected pollens from six endemic Western Australian eucalypts and the possible significance to the Western Australian beekeeping industry. Aust J Exp Agr. doi:10.1071/EA00160

    Google Scholar 

  • Manson JS, Otterstatter MC, Thomson JD (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia. doi:10.1007/s00442-009-1431-9

    PubMed  Google Scholar 

  • Molan PC (1992) The antibacterial activity of honey 2. Variation in the potency of the antibacterial activity. Bee World. doi:10.1080/0005772X.1992.11099118

    Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE. doi:10.1371/journal.pone.0009754

    PubMed  PubMed Central  Google Scholar 

  • Naug D (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Conserv. doi:10.1016/j.biocon.2009.04.007

    Google Scholar 

  • Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res. doi:10.3896/IBRA.1.49.1.01

    Google Scholar 

  • Olofsson TC, Vasquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol. doi:10.1007/s00284-008-9202-0

    PubMed  Google Scholar 

  • Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM (2011) Non-immunological defense in an evolutionary framework. Trends Ecol Evol. doi:10.1016/j.tree.2011.02.005

    PubMed  Google Scholar 

  • Potts SG, Roberts SP, Dean R, Marris G, Brown JR, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. J Apicu Res. doi:10.3896/IBRA.1.49.1.02

    Google Scholar 

  • Prášil O, Urajová P, Krištůfek V, Frydrychová R (2016) Včely a řasy. Moderní včelař 13:23–24

  • Richardson LL, Adler LS, Leonard AS, Andicoechea J, Regan KH, Anthony WE, Irwin RE (2015) Secondary metabolites in floral nectar reduce parasite infections in bumblebees. P R Soc B. doi:10.1098/rspb.2014.2471

    Google Scholar 

  • Riessberger-Gallé U, López JH, Schuehly W, Crockett S, Krainer S, Crailsheim K (2015) Immune responses of honeybees and their fitness costs as compared to bumblebees. Apidologie. doi:10.1007/s13592-014-0318-x

    PubMed  Google Scholar 

  • Rinderer TE, Rothenbuhler WC, Gochnauer TA (1974) The influence of pollen on the susceptibility of honey-bee larvae to Bacillus larvae. J Invertebr Pathol. doi:10.1016/0022-2011(74)90100-1

    Google Scholar 

  • Royce L, Yoder J, Nelson B, Lorenz A (2015) Tree hive colonies. Bee Culture

  • Sasu MA, Wall KL, Stephenson AG (2010) Antimicrobial nectar inhibits a florally transmitted pathogen of a wild Cucurbita pepo (Cucurbitaceae). Am J Bot. doi:10.3732/ajb.0900381

    PubMed  Google Scholar 

  • Seeley TD, Morse RA (1976) The nest of the honey bee (Apis mellifera L.). Insectes Soc. doi:10.1007/BF02223477

    Google Scholar 

  • Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution. doi:10.1111/j.1558-5646.2009.00772.x

    PubMed  Google Scholar 

  • Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees. PLoS ONE. doi:10.1371/journal.pone.0034601

    PubMed  PubMed Central  Google Scholar 

  • Singh S, Saini K, Jain KL (1999) Quantitative comparison of lipids in some pollens and their phagostimulatory effects in honey bees. J Apic Res. doi:10.1080/00218839.1999.11100999

    Google Scholar 

  • Somerville D (2005) Fat bees skinny bees—a manual of honey bee nutrition for beekeepers. Rural Industries Research and development Corporation, Goulburn

    Google Scholar 

  • Speight MCD (1989) Saproxylic invertebrates and their conservation. Nat Environ Ser 42:5–56

    Google Scholar 

  • Stamets P (2014) Report from the underground—Bioneers. Youtube https://www.youtube.com/watch?v=DAw_Zzge49c. Accessed 4 Nov 2016

  • Stamets PE (2015) U.S. Patent Application No. 14/641,432

  • Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tadman J (2014) Medical herbs for bees—an experiment. The Australasian Beekeeper

  • Tedore C, Johnsen S (2015) Immunological dependence of plant-dwelling animals on the medicinal properties of their plant substrates: a preliminary test of a novel evolutionary hypothesis. Arth-Plant Int. doi:10.1007/s11829-015-9386-8

    Google Scholar 

  • Thorburn LP, Adler LS, Irwin RE, Palmer-Young EC (2015) Variable effects of nicotine, anabasine, and their interactions on parasitized bumble bees. F1000Research. doi:10.12688/f1000research.6870.2

    PubMed  PubMed Central  Google Scholar 

  • Tihelka E (2016) Teorie samoléčení včel: polní experiment let 2012–2020. VIII. setkání uživatelů Varroamonitoring systému, Brno

  • Tulloch AP (1970) The composition of beeswax and other waxes secreted by insects. Lipids. doi:10.1007/BF02532476

    Google Scholar 

  • Vorlová L, Karpíšková R, Chabinioková I, Kalábová K, Brázdová Z (2005) The antimicrobial activity of honeys produced in the Czech Republic. Czech J Anim Sci 50:369

    Google Scholar 

  • Wahdan HAL (1998) Causes of the antimicrobial activity of honey. Infection. doi:10.1007/BF02768748

    PubMed  Google Scholar 

  • Wahl O, Ulm K (1983) Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia. doi:10.1007/BF00388082

    PubMed  Google Scholar 

  • Williams DL (2000) A veterinary approach to the European honey bee (Apis mellifera). Vet J. doi:10.1053/tvjl.2000.0474

    PubMed  Google Scholar 

  • Williams I, Carreck NL (2014) Land use changes and honey bee forage plants. In: Matheson A, Carreck NL (eds) Forage for pollinators in an agricultural landscape, 1st edn. International Bee Research Association, Milton Keynes, pp 7–20

    Google Scholar 

  • Yoder JA, Jajack AJ, Rosselot AE, Smith TJ, Yerke MC, Sammataro D (2013) Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J Toxicol Env Health A. doi:10.1080/15287394.2013.798846

    Google Scholar 

  • Yoram G, Inbar M (2011) Distinct antimicrobial activities in aphid galls on Pistacia atlantica. Plant Signal Behav. doi:10.4161/psb.6.12.18031

    PubMed Central  Google Scholar 

  • Zahradník P (2016) Může používání přípravků na ochranu rostlin v lesním hospodářství negativně ovlivnit včely? Moderní včelař 13:14–18

Download references

Acknowledgements

I am grateful to four anonymous reviewers for their comments that considerably improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Tihelka.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Handling Editor: Guy Smagghe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tihelka, E. The immunological dependence of plant-feeding animals on their host’s medical properties may explain part of honey bee colony losses. Arthropod-Plant Interactions 12, 57–64 (2018). https://doi.org/10.1007/s11829-017-9553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9553-1

Keywords

Navigation