Skip to main content

Advertisement

Log in

A test of concordance in community structure between leafhoppers and grasslands in the central Tien Shan Mountains

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Leafhoppers and related Auchenorrhynchous Hemiptera (AH) are among the most diverse grassland herbivores, and many have been linked inexorably to grassland vegetation through diet and shelter for millions of years. Are AH–plant communities in natural grasslands tightly integrated, how does the interaction differ across major ecological gradients, and do habitat or environmental factors explain the most variance in AH community structure? These questions have implications for the conservation of biodiversity and in evaluating effects of a warming climate. Using grasslands of the central Tien Shan Mountains as a natural laboratory, we examine whether AH species assemblages are concordant with vegetation in terms of community structure using closely associated species-level samples. Data were recorded from a nearly 3000-m elevation gradient crossing four arid and three montane grassland vegetation classes. We found elements of AH–plant community classification and structure to be closely correlated except for at the arid–montane habitat transition where a small group of widespread AH species were significant indicators for vegetation classes in both major grassland types. AH species richness and abundance are positively correlated with plant species density and percent cover and, correspondingly, peak at mid-elevations in association with montane grasslands. While overall elevation (and covariate mean annual temperature) explains the most variance in AH species assemblages, the sum total of habitat factors explain more variance than environmental factors when arid and montane grasslands were examined separately, but environmental factors are co-equal with habitat factors when the grassland types are combined. Unexplained variance in the AH community assemblages, attributable to individualistic species responses to environmental and habitat factors, slightly exceeds the total accounted for by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal AA, Lau JA, Hambäck PA (2006) Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q Rev Biol 81:349–376

    Article  PubMed  Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  PubMed  Google Scholar 

  • Biedermann R, Achtziger R, Nickel H, Stewart A (2005) Conservation of grassland leafhoppers: a brief review. J Insect Conserv 9:229–243

    Article  Google Scholar 

  • Borchardt P, Schickhoff U, Scheitweiler S, Kulikov M (2011) Mountain pastures and grasslands in the SW Tien Shan, Kyrgyzstan–floristic patterns, environmental gradients, phytogeography, and grazing impact. J Mt Sci 8:363–373

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–234

    Google Scholar 

  • Brown VK, Gibson CWD, Kathirithamby J (1992) Community organization in leaf hoppers. Oikos 65:97–106

    Article  CAS  Google Scholar 

  • Catanach TA (2013) Biogeography and phylogenetics of grassland Auchenorrhyncha. Dissertation, University of Illinois at Urbana-Champaign

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2015) PRIMER v7: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Prog Ser 46:213–226

    Article  Google Scholar 

  • DeLong DM (1948) The leafhoppers, or Cicadellidae, of Illinois (Eurymelinae-Balcluthinae). Bull Ill Nat Hist Surv 24:97–376

    Google Scholar 

  • Dennis P, Young MR, Gordon IJ (1998) Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands. Ecol Entomol 23:253–264

    Article  Google Scholar 

  • Dietrich CH (1999) The role of grasslands in the diversification of leafhoppers (Homoptera: Cicadellidae): a phylogenetic perspective. In: Warwick C (ed) Proceedings of the fifteen North American Prairie conference. Natural Areas Association, Bend, pp 44–48

    Google Scholar 

  • Dietrich CH, Whitcomb RF, Black WC (1997) Phylogeny of the grassland leafhopper genus Flexamia (Homoptera: Cicadellidae) based on mitochondrial DNA sequences. Mol Phylogenet Evol 8:139–149

    Article  CAS  PubMed  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Erhardt A, Thomas JA (1991) Lepidoptera as indicators of change in the semi-natural grasslands of lowland and upland Europe. In: Collins NM (ed) The conservation of insects and their habitats. Academic Press, London, pp 213–236

    Chapter  Google Scholar 

  • Eyre MD, Woodward JC, Luff ML (2001) The distribution of grassland Auchenorrhyncha assemblages (Homoptera: Cercopidae, Cicadellidae, Delphacidae) in northern England and Scotland. J Insect Conserv 5(1):37–45

    Article  Google Scholar 

  • Frei ER, Ghazoul J, Matter P, Heggli M, Pluess AR (2014) Plant population differentiation and climate change: responses of grassland species along an elevational gradient. Glob Change Biol 20:441–455

    Article  Google Scholar 

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, Oxford

    Google Scholar 

  • Gibson CWD, Brown VK, Losito L, McGavin GC (1992) The response of invertebrate assemblies to grazing. Ecography 15:166–176

    Article  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7–26

    Article  Google Scholar 

  • Grytnes JA (2003) Ecological interpretations of the mid-domain effect. Ecol Lett 6(10):883–888

    Article  Google Scholar 

  • Hamilton KGA (1995) Evaluation of leafhoppers and their relatives (Homoptera: Auchenorrhyncha) as indicators of prairie preserve quality. In: Hartnett DC (ed) Proceedings of the Fourteenth North American Prairie conference: Prairie biodiversity. Kansas State University, Manhattan, pp 211–226

    Google Scholar 

  • Hawkins BA, Porter EE (2003) Does herbivore diversity depend on plant diversity? The case of California butterflies. Am Nat 161:40–49

    Article  PubMed  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Hodknison ID, Bird J (1998) Host-specific insect herbivores as sensors of climate change in arctic and alpine environments. Arct Alp Res 30:78–83

    Article  Google Scholar 

  • Hollier J, Brown VK, Edwards-Jones G (1994) Successional leafhopper assemblages: pattern and process. Ecol Res 9:185–191

    Article  Google Scholar 

  • IBM (2015) SPSS Statistics, Version 23

  • Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:1–10

    Article  Google Scholar 

  • Janzen DH (1973) Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54:687–708

    Article  Google Scholar 

  • Johnson N (1949) Systems of frequency curves generated by methods of translation. Biometrika 36:149–176

    Article  CAS  PubMed  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22(11):569–574

    Article  PubMed  Google Scholar 

  • Kruess A, Tscharntke T (2002) Contrasting responses of plant and insect diversity to variation in grazing intensity. Biol Conserv 106:293–302

    Article  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage, Beverley Hills

    Book  Google Scholar 

  • Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies. 1. Hierarchical systems. Comput J 9:373–380

    Article  Google Scholar 

  • Laurie H, Silander JA Jr (2002) Geometric constraints and spatial pattern of species richness: critique of range-based null models. Divers Distrib 8:351–364

    Article  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–39

    Article  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and perspective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Maczey N, Masters GJ, Hollier JA, Mortimer SR, Brown VK (2005) Community associations of chalk grassland leafhoppers (Hemiptera: Auchenorrhyncha): conclusions for habitat conservation. J Insect Conserv 9(4):281–297

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • McCloud DE (1974) Proceedings XII international grassland congress. In: Iglovikov VG, Movsisyants AP (eds) Proceedings XII international grassland congress, pp 62–75

  • McCoy ED (1990) The distribution of insects along elevational gradients. Oikos 58(3):313–322

    Article  Google Scholar 

  • McCune B, Grace JG (2002) Analysis of ecological communities. MjM Software Design Glendeden Beach

  • McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data, version 5.31. MjM Software, Gleneden Beach

  • Menéndez R (2007) How are insects responding to global warming? Tijdschr Entomol 150:355–365

    Google Scholar 

  • Morris MG (1967) Differences between the invertebrate faunas of grazed and ungrazed chalk grassland. I. Responses of some phytophagous insects to cessation of grazing. J Appl Ecol 4:459–474

    Article  Google Scholar 

  • Morris MG (1971) Differences between the invertebrate faunas of grazed and ungrazed chalk grassland. IV. Abundance and diversity of Homoptera-Auchenorhyncha. J Appl Ecol 8:37–52

    Article  Google Scholar 

  • Morris MG (1973) The effects of seasonal grazing on the Heteroptera and Auchenorrhyncha (Hemiptera) of chalk grassland. J Appl Ecol 10:761–780

    Article  Google Scholar 

  • Morris MG (1981) Responses of grassland invertebrates to management by cutting. J Appl Ecol 18:107–123

    Article  Google Scholar 

  • Murdoch WW, Evans FC, Peterson CH (1972) Diversity and pattern in plants and insects. Ecology 53:819–829

    Article  Google Scholar 

  • Nast J (1972) Palearctic Auchenorrhyncha (Homoptera): an annotated check list. Polish Academy of Sciences, Warsaw

    Google Scholar 

  • Nault LR, DeLong DM (1980) Evidence for co-evolution of leafhoppers in the genus Dalbulus (Cicadellidae: Homoptera) with maize and its ancestors. Ann Entomol Soc Am 73:349–353

    Article  Google Scholar 

  • Nickel H, Hildebrandt J (2003) Auchenorrhyncha communities as indicators of disturbance in grasslands (Insecta, Hemiptera)—a case study from the Elbe Flood Plains (northern Germany). Agric Ecosyst Environ 98:183–199

    Article  Google Scholar 

  • Nickel H, Remane R (2002) Artenliste der Zikaden Deutschlands, mit Angabe von Nährpflanzen, Nahrungsbreite, Lebenszyklus, Areal und Gefährdung (Hemiptera, Fulgoromorpha et. Cicadamorpha). Beitrage der Zikadenkunde 5:27–54

    Google Scholar 

  • Niemela J, Haila Y, Punttila P (1996) The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–368

    Article  Google Scholar 

  • Nikol’skii AA (1994) North Eurasia. In: McNeely JA, Harrison J, Dingwall P (eds) Protecting nature: regional reviews of protected areas. IUCN, Gland, pp 137–155

    Google Scholar 

  • Novikov DV, Novikova NV, Anufriev GA, Dietrich CH (2006) Auchenorrhyncha (Hemiptera) of Kyrgyz Grasslands. Russ Entomol J 15:303–310

    Google Scholar 

  • Novotny V (1990) Are the parameters of leafhopper (Auchenorrhyncha) and plant-communities confluent—a case-study on grassland and sedge vegetation. Acta Entomol Bohem 87:459–469

    Google Scholar 

  • Pellisier L, Fiedler K, Ndribe C, Dubuis A, Pradervand J-N, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2(8):1818–1825

    Article  Google Scholar 

  • Post WM, Sheperd JD (1974) Hierarchical agglomeration. University of Wisconsin, Madison

    Google Scholar 

  • Primi R, Filibeck G, Amici A, Bückle C, Cancellieri L, Di Filippo A, Gentile C, Guglielmino A, Latini R, Mancini LD, Mensing SA, Rossi CM, Rossini F, Scoppola A, Sulli C, Venanzi R, Ronchi B, Piovesan G (2016) From Landsat to leafhoppers: a multidisciplinary approach for sustainable stocking assessment and ecological monitoring in mountain grasslands. Agric Ecosyst Environ 234:118–133

    Article  Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18(2):200–205

    Article  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8(2):224–239

    Article  Google Scholar 

  • Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014a) Climate-driven change in plant-insect interactions along elevation gradients. Funct Ecol 28:46–54

    Article  Google Scholar 

  • Rasmann S, Alvarez N, Pellissier L (2014b) The altitudinal niche-breadth hypothesis in insect plant interactions. Annu Plant Rev 47:339–360

    Article  CAS  Google Scholar 

  • Ryan TA, Joiner BL (1976) Normal probability plots and tests for normality. Technical Report, Statistics Department, The Pennsylvania State University

  • Schemske DW, Mittelbach GC, Cornell HV, Sobel JM, Roy K (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269

    Article  Google Scholar 

  • Siemann E, Haarstad J, Tilman D (1997) Short-term and long-term effects of burning on oak savanna arthropods. Am Midlife Nat 137:349–361

    Article  Google Scholar 

  • Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750

    Article  CAS  PubMed  Google Scholar 

  • Singer MC, Parmesan CP (1993) Sources of variations in patterns of plant–insect association. Nature 361:251–253

    Article  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44(1):261–280

    Article  Google Scholar 

  • Taft JB, Phillippe LR, Dietrich CH, Robertson KR (2011) Grassland composition, structure, and diversity patterns along major environmental gradients in the Central Tien Shan. Plant Ecol 212:1349–1361

    Article  Google Scholar 

  • Tscharntke T, Greiler H-J (1995) Insect communities, grasses, and grasslands. Annu Rev Entomol 40:535–558

    Article  CAS  Google Scholar 

  • UNECE (2010) Country profiles on the housing sector: Kyrgyzstan. United Nations Economic Commission for Europe, United Nations, New York

    Google Scholar 

  • Vykhodtsev IV (1976) The vegetation of the Tien Shan and Alai Mountain Systems. Frunze, Kyrgyzstan (in Russian)

  • Wallner AM, Molano-Flores B, Dietrich CH (2013a) Using Auchenorrhyncha (Insecta: Hemiptera) to develop a new insect index in measuring North American tallgrass prairie quality. Ecol Indic 25:58–64

    Article  Google Scholar 

  • Wallner AM, Molano-Flores B, Dietrich CH (2013b) Evaluating hill prairie quality in the Midwestern United States using Auchenorrhyncha (Insecta: Hemiptera) and vascular plants: a case study in implementing grassland conservation planning and management. Biodivers Conserv 22:615–637

    Article  Google Scholar 

  • Waloff N (1980) Studies on grassland leafhoppers (Auchenorrhyncha, Homoptera) and their natural enemies. Adv Ecol Res 11:81–215

    Article  Google Scholar 

  • Warren SD, Scifres CJ, Teel PD (1987) Response of grassland arthropods to burning: a review. Agric Ecosyst Environ 19:105–130

    Article  Google Scholar 

  • Whitcomb RF, Hicks AL (1988) Genus Flexamia: new species, phylogeny, and ecology. Gt Basin Nat Memoirs 12:224–323

    Article  Google Scholar 

  • Whitcomb RF, Kramer JP, Coan ME, Hicks AL (1987) Ecology and evolution of leafhopper-grass host relationships in North American grasslands. In: Harris KF (ed) Current topics in vector research, vol 4. Springer, New York, pp 125–182

    Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Whittaker JB, Tribe NP (1996) An altitudinal transect as an indicator of responses of a spittlebug (Auchenorrhyncha:Cercopidae) to climate change. Eur J Entomol 93:319–324

    Google Scholar 

  • Wishart D (1969) An algorithm for hierarchical classifications. Biometrics 25:165–170

    Article  Google Scholar 

  • Wolda H (1987) Altitude, habitat and tropical insect diversity. Biol J Linn Soc 30(4):313–323

    Article  Google Scholar 

  • Yanahan AD, Taylor SJ (2014) Vegetative communities as indicators of ground beetle (Coleoptera: Carabidae) diversity. Biodivers Conserv 23:1591–1609

    Article  Google Scholar 

  • Zahniser JN, Dietrich CH (2010) Phylogeny of the leafhopper subfamily Deltocephalinae (Hemiptera: Cicadellidae) based on molecular and morphological data with a revised family-group classification. Syst Entomol 35:489–511

    Article  Google Scholar 

  • Zahniser JN, Dietrich CH (2013) A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae). Eur J Taxon 45:1–211

    Google Scholar 

Download references

Acknowledgements

This work was funded in part by a grant from the National Science Foundation (NSF Grant # DEB9870187). The authors would like to thank Janet Jarvis for creating location map, Natalia Novikova for assistance with specimen processing (Auchenorrhyncha), and would like to specially thank Dmitry Milko for his able coordination of the field expeditions. The authors are also thankful to two anonymous reviewers who provided insightful suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Taft.

Additional information

Handling Editor: Heikki Hokkanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taft, J.B., Dietrich, C.H. A test of concordance in community structure between leafhoppers and grasslands in the central Tien Shan Mountains. Arthropod-Plant Interactions 11, 843–859 (2017). https://doi.org/10.1007/s11829-017-9539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9539-z

Keywords

Navigation