Skip to main content
Log in

Characterization of volatiles in strawberry varieties ‘Elsanta’ and ‘Sonata’ and their effect on bumblebee flower visiting

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The bumblebee Bombus terrestris is a general pollinator in Europe and also highly suitable as greenhouse pollinator of various agricultural and horticultural crops such as tomato, sweet pepper or strawberry. Here, we highlight the importance of volatile emissions for the attractiveness and pollination efficiency of strawberry varieties, starting from the unique observation that two related strawberry varieties are pollinated to a different extent when cultivated together. In a flight cage Fragaria × ananassa var. ‘Sonata’ was pollinated more frequently (>2 times) and with longer-duration visits (11.2 vs. 6.7 s) by B. terrestris as compared to var. ‘Elsanta.’ To investigate whether this visitation difference could be attributed to differential production of flower volatile compounds, we quantified and analyzed the floral emissions of both varieties. Samples of var. ‘Elsanta’ contained more green leaf volatiles such as E-2-hexenal (0.53 vs. 0 ng/3 flowers), Z-3-hexenol (2.26 vs. 0.20 ng/3 flowers) and Z-3-hexenyl acetate (2.15 vs. 0.46 ng/3 flowers) which are known to play a role in plant defense. In a third series of experiments, we determined olfactory responses of B. terrestris to some similar individual synthetic green leaf volatiles presented in a Y-tube olfactometer. B. terrestris workers responded in an aversive manner to these volatile compounds compared to purified air. Since the floral bouquet of var. ‘Elsanta’ contains more green leaf volatiles, bumblebees will exhibit a preference for var. ‘Sonata.’ Our observations suggest that the pollination preference for ‘Sonata’ is due to being ‘less repellent’ instead of ‘more attractive’ than ‘Elsanta,’ with variety-specific flower emissions lying at the basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrol D. P. (2012) Pollination biology: biodiversity conservation and agricultural production. Kew Bulletin Springer Vol. 21, 534

  • Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734(2):91–111

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Smith BH (1998) An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). J Exp Biol 201:3113–3121

    CAS  PubMed  Google Scholar 

  • Demeestere K, Dewulf J, De Roo K, De Wispelaere P, Van Langenhove H (2008) Quality control in quantification of volatile organic compounds analysed by thermal desorption-gas chromatography-mass spectrometry. J Chromatogr 1186:348–357

    Article  CAS  Google Scholar 

  • Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can J Zool 88(7):668–697

    Article  Google Scholar 

  • Dudareva N, Pichersky E (2006) Handbook Biology of floral scent. CRC Press Taylor and Francis Group

  • Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65(10):1545–1560

    CAS  PubMed  Google Scholar 

  • Galen C, Kaczorowski R, Todd SL, Geib J, Raguso R (2010) Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the alpine skypilot Polemonium viscosum. Am Nat 177(2):258–272

    Article  Google Scholar 

  • Gegear R, Laverty T (2005) Flower constancy in bumblebees: a test of the trait variability hypothesis. Anim Behav 69(4):939–949

    Article  Google Scholar 

  • Getz W, Akers P (1995) Partitioning non-linearities in the response of honey bee olfactory receptor neurons to binary odors. BioSystems 34:27–40

    Article  CAS  PubMed  Google Scholar 

  • Giner G, Avilla J, De Zutter N, Ameye M, Balcells M, Smagghe G (2013) Insecticidal and repellent action of allyl esters against Acyrthosiphon pisum (Hemiptera: Aphididae) and Tribolium castaneum (Coleoptera: Tenebrionidae) by contact and ingestion. Ind Crops Prod 47:63–68

    Article  CAS  Google Scholar 

  • Goulson D (2010) Bumblebees behaviour, ecology and conservation, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Granero AM, Sanz JMG, Gonzalez FJE, Vidal JLM, Dornhaus A, Ghani J, Chittka L (2005) Chemical compounds of the foraging recruitment pheromone in bumblebees. Die Naturwissenschaften 92(8):371–374

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  CAS  PubMed  Google Scholar 

  • Heinrich B. (2004) Bumblebee economics, Harvard University Press, originally published: 1979

  • Ishii HS, Hirabayashi Y, Kudo G (2008) Combined effects of inflorescence architecture, display size, plant density and empty flowers on bumble bee behaviour: experimental study with artificial inflorescences. Oecologia 156(2):341–350

    Article  PubMed  Google Scholar 

  • Jackson A (1993) Natural route to pollination. Grower 42(4):25–26

    Google Scholar 

  • Joo E, Van Langenhove H, Simpraga M, Steppe K, Amelynck C, Schoon N, Muller JF, Dewulf J (2010) Variation in biogenic volatile organic compound emission pattern of Fagus sylvatica L. due to aphid infection. Atmos Environ 44:227–234

    Article  CAS  Google Scholar 

  • Kessler A, Halitschke R (2009) Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and case study. Funct Ecol 23(5):901–912

    Article  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2008) Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry 69(11):2127–2132

    Article  CAS  PubMed  Google Scholar 

  • Klatt BK, Burmeister C, Westphal C, Tscharntke T, von Fragstein M (2013) Flower volatiles, crop varieties and bee responses. PLoS ONE 8(8):e72724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72(1):1–120

    Article  Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94(3):619–628

    Article  CAS  Google Scholar 

  • Kulahci IG, Dornhaus A, Papaj DR (2008) Multimodal signals enhance decision making in foraging bumble-bees. Proc Biol Sci 275(1636):797–802

    Article  PubMed Central  PubMed  Google Scholar 

  • Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12(4):447–456

    Article  Google Scholar 

  • Laloi D, Sandoz JC, Marchesi A, Pouvreau A, Tas JN, Poppy G (1999) Olfactory conditioning of the proboscis extension in bumble bees. Entomol Exp Appl 90(1995):123–129

    Article  Google Scholar 

  • Laska M, Galizia CG, Giurfa M, Menzel R (1999) Olfactory discrimination ability and odor structure-activity relationships in honeybees. Chem Senses 24(4):429–438

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie KE (1997) Pollination requirements of three highbush blueberry (Vaccinium corymbosum L.) cultivars. J Am Soc Hortic Sci 122(6):891–896

    Google Scholar 

  • Morse A, Kevan P, Shipp L, Khosla S, McGarvey B (2012) The impact of greenhouse tomato (Solanales: Solanaceae) floral volatiles on bumble bee (Hymenoptera: Apidae) pollination. Environ Entomol 41(4):855–864

    Article  Google Scholar 

  • Parachnowitsch AL, Raguso RA, Kessler A (2012) Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytol 195(3):667–675

    Article  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol 170(1):23–40

    Article  CAS  Google Scholar 

  • Raguso RA (2009) Floral scent in a whole-plant context: moving beyond pollinator attraction. Funct Ecol 23(5):837–840

    Article  Google Scholar 

  • Rasmont P, Regali A, Ings TC, Lognay G, Baudart E, Marlier M, Chittka L (2005) Analysis of pollen and nectar of Arbutus unedo as a food source for Bombus terrestris (Hymenoptera: Apidae). J Econ Entomol 98(3):656–663

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona C, Parra L, Quiroz A, Isaacs R (2011) Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees. Ann Bot 107(8):1377–1390

    Article  PubMed Central  PubMed  Google Scholar 

  • Schiestl FP, Huber FK, Gomez JM (2010) Phenotypic selection on floral scent: trade-off between attraction and deterrence? Evol Ecol 25(2):237–248

    Article  Google Scholar 

  • Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) Alpha-pinene inhibits growth and induces oxidative stress in roots. Ann Bot 98(6):1261–1269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stout JC, Goulson D, Allen JA (1998) Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp.). Behav Ecol Sociobiol 43:317–326

    Article  Google Scholar 

  • Suchet C, Dormont L, Schatz B, Giurfa M, Simon V, Raynaud C, Chave J (2010) Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees. Behav Ecol Sociobiol 65(5):1015–1027

    Article  Google Scholar 

  • Velthuis H, Van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451

    Article  Google Scholar 

  • Wei J, Kang L (2011) Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signaling and Behavior 6(3):369–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signaling of floral rewards. Funct Ecol 23(5):841–851

    Article  Google Scholar 

  • Wright GA, Smith BH (2004) Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera). Chem Senses 29(2):127–135

    Article  PubMed  Google Scholar 

  • Zaitoun ST, Al-Ghzawi AA, Shannag HK, Al-tawaha ARM (2006) Comparative study on the pollination of strawberry by bumble bees and honeybees under plastic house conditions in Jordan valley. J Food Agric Environ 4(2):237–240

    Google Scholar 

  • Zebrowska J (1998) Influence of pollination modes on yield components in strawberry (Fragaria x ananassa Duch.). Plant Breeding 117:255–260

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Peter Melis (Proefcentrum Hoogstraten, Meerle, Belgium) for his expertise and providing strawberry plants, and Laurens De Meyer, Lore Vandermeersch, Philip Deman and Erik Moerman (all Ghent University) for their help with the insects, sample collection and GC–MS analysis. Finally, we acknowledge support by VUB (Free University of Brussels) for the opportunities to make the experiment in part possible, and the company Biobest for providing bumblebees as a test organism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Smagghe.

Additional information

Handling Editor: Jarmo Holopainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceuppens, B., Ameye, M., Van Langenhove, H. et al. Characterization of volatiles in strawberry varieties ‘Elsanta’ and ‘Sonata’ and their effect on bumblebee flower visiting. Arthropod-Plant Interactions 9, 281–287 (2015). https://doi.org/10.1007/s11829-015-9375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9375-y

Keywords

Navigation