Skip to main content
Log in

The effect of microhabitat feeding site selection on aphid foraging and predation risk

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Organisms attempt to optimize foraging by maximizing resource acquisition while minimizing predation risk. Aphids (group-living, phloem-feeding insects) routinely change feeding positions and interact with predators and parasites at the single-leaf scale. Here, we assess the life history and predation risk consequences of within-leaf feeding site choices in pea aphids in response to different natural enemies. First, three-chambered clip cages were used to isolate first instar aphids anterior and posterior to a centrally feeding adult on the underside of a single broad bean leaf. Development time to adulthood did not differ between feeding sites, nor did fecundity within the first 24 h of reproduction. Second, we recorded the frequency and latency of natural enemy attacks on aphids adhered to three leaf sites, matching those of the clip cage experiment, on the underside of a single leaf. Aphids feeding nearest the leaf petiole were at greatest risk of predation by a foliar foraging coccinellid predator, Hippodamia convergens, but not by a parasitoid wasp, Aphidius ervi. Thus, feeding nearer the leaf petiole provided no individual life history benefits and exposes the aphid to increased predation risk. We further discuss the notion that feeding at these sites may provide inclusive fitness benefits for colony mates via alarm signaling and subsequent decreased predation success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA, Conner JK, Rasmann S (2010) Tradeoffs and adaptive negative correlations in evolutionary ecology. In: Bell M, Eanes W, Futuyma D, Levinton J (eds) Evolution after Darwin: the First 150 Years Sinauer Associates. Sunderland, MA

    Google Scholar 

  • Ayal Y (1987) The foraging strategy of Diaeretiella rapae I. The concept of the elementary unit of foraging. J Anim Ecol 56:1057–1068

    Article  Google Scholar 

  • Bänsch R (1964) Vergleichende Untersuchungen zur Biologie und zum Beutefangverhalten aphidivorer Coccinelliden. Chrysopiden und Syphriden. 91:271–340

    Google Scholar 

  • Barlow CA, Randolph PA (1978) Quality and quantity of plant sap available to the pea aphid. Ann Entomol Soc Am 71:46–48

    CAS  Google Scholar 

  • Bettridge C, Lehmann J, Dunbar RIM (2010) Trade-offs between time, predation risk and life history, and their implications for biogeography: a systems modelling approach with a primate case study. Ecol Model 221:777–790

    Article  Google Scholar 

  • Budenberg WJ (1990) Honeydew as a contact kairomone for aphid parasitoids. Entomol Exp et Appl 55:139–148

    Article  Google Scholar 

  • Calsbeek R, Cox RM (2010) Experimentally assessing the relative importance of predation and competition as agents of natural selection. Nature 465:613–616

    Article  CAS  PubMed  Google Scholar 

  • Carter MC, Dixon AFG (1982) Habitat quality and the foraging behavior of coccinellid larvae. J Anim Ecol 51:865–878

    Article  Google Scholar 

  • Clark CW, Mangel M (1986) The evolutionary advantages of group foraging. Theor Popul Biol 30:45–75

    Article  Google Scholar 

  • Dennis P, Wratten SD (1991) Field manipulations of populations of individual staphylinid species in cereals and their impact on aphid populations. Ecol Entomol 16:17–24

    Article  Google Scholar 

  • DeWitt TJ, Robinson BW, Wilson DS (2000) Functional diversity among predators of a freshwater snail imposes an adaptive trade-off for shell morphology. Evol Ecol Res 2:129–148

    Google Scholar 

  • Dill LM, Fraser AHG, Roitberg BD (1990) The economics of escape behavior in the pea aphid, Acyrthosiphon pisum. Oecologia 83:473–478

    Article  Google Scholar 

  • Dixon AFG (1959) An experimental study of the searching behavior of the predatory coccinellid beetle Adalia decempunctata (L). J Anim Ecol 28:259–281

    Article  Google Scholar 

  • Dixon AFG (1985) Aphid Ecology. Blackie and Sons, Glasgow

    Book  Google Scholar 

  • Dixon AFG (2000) Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge University Press, Cambridge

    Google Scholar 

  • Duff KM, Mondor EB (2012) All clone-mates are not created equal: fitness discounting theory predicts pea aphid colony structure. J Insect Behav 25:48–59

    Article  Google Scholar 

  • Elzen GW, Williams HJ, Vinson SB (1983) Response by the parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae) to chemicals (synomone) in plants: implications for host habitat location. Environ Entomol 12:1873–1877

    Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford University Press, New York

    Google Scholar 

  • Ferran A, Dixon AFG (1993) Foraging behavior of ladybird larvae (Coleoptera, Coccinellidae). Eur J Entomol 90:383–402

    Google Scholar 

  • Frazer BD, Gilbert N, Ivers PM, Raworth DA (1981) Control of aphid density by a complex of predators. Can Entomol 113:1035–1041

    Article  Google Scholar 

  • Frazer BD, McGregor RR (1994) Searching behaviour of adult female Coccinellidae (Coleoptera) on stem and leaf models. Can Entomol 126:389–399

    Article  Google Scholar 

  • Gall LF (1987) Leaflet position influences caterpillar feeding and development. Oikos 49:172–176

    Article  Google Scholar 

  • Gould GG, Jones CG, Rifleman P, Perez A, Coleman JS (2007) Variation in Eastern Cottonwood (Populus deltoides Bartr.) phloem sap content caused by leaf development may affect feeding site selection behavior in the aphid, Chaitophorus populicola Thomas (Homoptera: Aphididae). Environ Entomol 36:1212–1225

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F (2002) Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 28:1703–1715

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. I. J Theor Biol 7:1–16

    Article  CAS  Google Scholar 

  • Harmon JP, Losey JE, Ives AR (1998) The role of vision and color in the close proximity foraging behavior of four coccinellid species. Oecologia 115:289–292

    Article  Google Scholar 

  • Hassell MP, Southwood TRE (1978) Foraging strategies of insects. Annu Rev Ecol Syst 9:75–98

    Article  Google Scholar 

  • Hodek I, Honěk A (1996) Ecology of Coccinellidae. Kluwer Academic, Berlin

    Book  Google Scholar 

  • Hodek I, Honek A, van Emden HF (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae). Blackwell Publishing, Hobokon

    Book  Google Scholar 

  • Hopkins GW, Dixon AFG (2000) Feeding site location in birch aphids (Sternorrhyncha: Aphididae): the simplicity and reliability of cues. Eur J Entomol 97:279–280

    Google Scholar 

  • Joachim C, Hatano E, David A, Kunert M, Linse C, Weisser W (2013) Modulation of aphid alarm pheromone emission of pea aphid prey by predators. J Chem Ecol 39:773–782

    Article  CAS  PubMed  Google Scholar 

  • Karley AJ, Douglas AE, Parker WE (2002) Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J Exp Biol 205:3009–3018

    CAS  PubMed  Google Scholar 

  • Keiser CN, Mondor EB (2013) Transgenerational behavioral plasticity in a parthenogenetic insect in response to increased predation risk. J Insect Behav 26:603–613

    Article  Google Scholar 

  • Krebs JR (1980) Optimal foraging, predation risk and territory defense. Ardea 68:83–90

    Google Scholar 

  • Larson KC, Whitham TG (1991) Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Oecologia 88:15–21

    Article  Google Scholar 

  • Legrand A, Barbosa P (2000) Pea aphid (Homoptera: Aphididae) fecundity, rate of increase, and within plant distribution unaffected by plant morphology. Environ Entomol 29:987–993

    Article  Google Scholar 

  • Li S, Falabella P, Giannantonio S, Fanti P, Battaglia D, Digilio MC, Völkl W, Sloggett JJ, Weisser W, Pennacchio F (2002) Pea aphid clonal resistance to the endophagous parasitoid Aphidius ervi. J Insect Phys 48:971–980

    Article  CAS  Google Scholar 

  • Lima SL (2002) Putting predators back into behavioral predator-prey interactions. Trends Ecol Evol 17:70–75

    Article  Google Scholar 

  • Lima SL, Valone TJ, Caraco T (1985) Foraging efficiency predation-risk trade-off in the grey squirrel. Anim Behav 33:155–165

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Lima SL, Lesku JA, Rattenborg NC, Amlaner CJ (2005) Sleeping under risk of predation. Anim Behav 70:723–736

    Article  Google Scholar 

  • Lowe HJB (1967) Interspecific differences in the biology of aphids (Homoptera: Aphididae) on leaves of Vicia faba II. Growth and excretion. Entomol Exp Appl 10:413–420

    Article  Google Scholar 

  • Magnhagen C (1990) Reproduction under predation risk in the sand goby, Pomatoschistus minutus, and the black goby, Gobius niger: the effect of age and longevity. Behav Ecol Sociobiol 26:331–335

    Article  Google Scholar 

  • Markkula M (1963) Studies on the pea aphid, Acyrthosiphon pisum, with special reference to the differences in the biology of the green and red forms. Ann Agr Fen 2:1–30

    Google Scholar 

  • Michaud JP, Jyoti JL, Qureshi JA (2006) Positive correlation of fitness with group size in two biotypes of Russian Wheat Aphid (Homoptera: Aphididae). J Econ Entomol 99:1214–1224

    Article  CAS  PubMed  Google Scholar 

  • Mondor EB, Messing RH (2007) Direct vs. inclusive fitness in the evolution of aphid cornicle length. J Evol Biol 20:807–812

    Article  CAS  PubMed  Google Scholar 

  • Mondor EB, Baird DS, Slessor KN, Roitberg BD (2000) Ontogeny of alarm pheromone secretion in pea aphid, Acyrthosiphon pisum. J Chem Ecol 26:2875–2882

    Article  CAS  Google Scholar 

  • Mondor EB, Roitberg BD (2004) Inclusive fitness benefits of scent-marking predators. P Roy Soc B-Biol Sci 271S:341–343

    Article  Google Scholar 

  • Nakamuta K (1984) Visual orientation of a ladybird Coccinella septempunctata L. (Col.: Coccinellidae), towards its prey. Appl Entomol Zool 22:434–442

    Google Scholar 

  • Nault LR, Edwards LJ, Styer WE (1973) Aphid alarm pheromones: secretion and reception. Environ Entomol 2:101–105

    CAS  Google Scholar 

  • Ninkovic V, Abassi SA, Petersson J (2001) The influence of aphid-induced plant volatiles on ladybird beetle foraging behavior. Biol Control 21:191–195

    Article  Google Scholar 

  • Parker GA, Maynard Smith J (1990) Optimality theory in evolutionary biology. Nature 348:27–33

    Article  Google Scholar 

  • Pennacchio F, Digilio MC, Tremblay E, Tranfaglia A (1994) Host recognition and acceptance behaviour in two aphid parasitoid species: Aphidius ervi Haliday and Aphidius microlophii Pennacchio and Tremblay (Hymenoptera: Braconidae). Bull Entomol Res 84:57–64

    Article  Google Scholar 

  • Powell W, Hardie J, Hick AJ, Höller C, Mann J, Merritt L, Nottingham SF, Wadhams LJ, Witthinrich J, Wright AF (1993) Responses of the parasitoid Praon volucre (Hymenoptera: Braconidae) to aphid sex pheromone lures in cereal fields in autumn: Implications for parasitoid manipulation. Eur J Entomol 90:435–438

    Google Scholar 

  • Roitberg BD, Myers JH (1978) Adaptation of alarm pheromone responses of the pea aphid Acyrthosiphon pisum (Harris). Can J Zool 83:103–108

    Article  Google Scholar 

  • SAS Institute Inc. 2007. JMP, Version 7. Cary, NC, 1989–2007

  • Sih A (1980) Optimal behavior: can foragers balance two conflicting demands? Science 210:1041–1043

    Article  CAS  PubMed  Google Scholar 

  • Stacey DA, Thomas MB, Blandford S, Pell JK, Pugh C, Fellowes MDE (2003) Genotype and temperature influence pea aphid resistance to a fungal entomopathogen. Physiol Entomol 28:75–81

    Article  Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on Plants Community Patterns and Mechanisms. Blackwell, Oxford

    Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Sweitzer RA (1996) Predation or starvation: Consequences of foraging decisions by porcupines (Erethizon dorsatum). J Mammal 77:1068–1077

    Article  Google Scholar 

  • Templeton AR, Rothman ED (1974) Evolution in heterogeneous environments. Am Nat 108:409–428

    Article  Google Scholar 

  • Tomiuk J, Wohrmann K (1982) Comments on the stability of aphid clones. Experientia 38:320–321

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Ann Rev Ent 37:141–172

    Article  Google Scholar 

  • Völkl W (1990) Fortpflanzungsstrategien bei Blattlausparasitoiden: Konsequenzen ihrer Interaktionen mit Wirten und Ameisen. Ph.D. thesis. University of Bayreuth

  • Völkl W (2000) Foraging behaviour and sequential multisensory orientation in the aphid parasitoid Pauesia picta (Hym., Aphidiidae) at different spatial scales. J Appl Entomol 124:307–314

    Article  Google Scholar 

  • Völkl W, Mackauer M, Pell JK, Brodeur J (2007) Predators, parasitoids, and pathogens. In: van Emden HF, Harrington R (eds) Aphids as Crop Pests. CAB International, Wallingford

    Google Scholar 

  • Wellings PW (1993) Foraging behavior in aphid parasitoids: spatial scale and resource assessment. Eur J Entomol 90:377–382

    Google Scholar 

  • Whitham TG (1980) The theory of habitat selection: examined and extended using Pemphigus aphids. Am Nat 115:449–466

    Article  Google Scholar 

  • Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    Article  CAS  PubMed  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Ann Rev Ecol Syst 32:95–126

    Article  Google Scholar 

  • Zucker WV (1982) How aphids choose leaves: the roles of phenolics in host selection by a galling aphid. Ecology 63:972–981

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank S.P. Vives, D.K. McLain, J.N. Pruitt, and two anonymous reviewers for comments, which significantly improved the manuscript and B.A. Cantwell for laboratory and greenhouse assistance. We thank K. Oliver for providing parasitoids. Funding for this project was provided by the Department of Biology at Georgia Southern University and the Georgia Entomological Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl N. Keiser.

Additional information

Handling Editor: Robert Glinwood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keiser, C.N., Sheeks, L.E. & Mondor, E.B. The effect of microhabitat feeding site selection on aphid foraging and predation risk. Arthropod-Plant Interactions 7, 633–641 (2013). https://doi.org/10.1007/s11829-013-9279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-013-9279-7

Keywords

Navigation