Skip to main content
Log in

Effects of plant competition and herbivore density on the development of the turnip root fly (Delia floralis) in an intercropping system

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

In this study, interactive effects of plant competition and herbivory on plant quality and herbivore development were examined in a greenhouse experiment where cabbage plants [Brassica oleracea L. var. capitata (Brassicaceae)] were intercropped with red clover [Trifolium pratense L. (Fabaceae)]. Cabbages were grown with two red clover densities and attack rates by the root feeding herbivore the turnip root fly, Delia floralis Fall. (Diptera: Anthomyiidae). Above ground and below ground cabbage biomass was reduced through intercropping and larval damage. Intercropping also resulted in lower nitrogen and higher carbon root levels compared with levels in the roots of monocultured cabbage. Furthermore, both root nitrogen and carbon levels increased with herbivory. Root neutral detergent fibre (NDF) and lignin content increased in response to both increased plant competition and higher egg densities. For lignin, an interaction effect was observed in the form of elevated levels in intercropped plants subjected to larval damage, while levels in roots of monocultured cabbage remained unchanged. The quality changes brought about by clover competition affected D. floralis development negatively, which resulted in reduced pupal weight. In addition, increased egg density also decreased larval growth. The effects on the development of D. floralis in relation to host plant quality are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agele SO, Iremiren GO, Ojeniyi SO (1999) Effects of plant density and mulching on the performance of late-season tomato (Lycopersicon esculentum) in southern Nigeria. J Agric Sci 133:397–402. doi:10.1017/S0021859699006942

    Article  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844. doi:10.1146/annurev.ento.47.091201.145300

    Article  PubMed  CAS  Google Scholar 

  • Bethke JA, Parrella MP, Trumble JT, Toscano NC (1987) Effect of tomato cultivar and fertilizer regime on the survival of Liriomyza trifolii (Diptera: Agromyzidae). J Econ Entomol 80:200–203

    Google Scholar 

  • Björkman M, Hambäck PA, Rämert B (2007) Neighbouring monocultures enhance the effect on the turnip root fly (Delia floralis) in intercropping systems. Entomol Exp Appl 124:319–326. doi:10.1111/j.1570-7458.2007.00589.x

    Article  Google Scholar 

  • Bonifas KD, Walters DT, Cassman KG, Lindquist JL (2005) Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Sci 53:670–675. doi:10.1614/WS-05-002R.1

    Article  CAS  Google Scholar 

  • Booij CJH, Noorlander J, Theunissen J (1997) Intercropping cabbage with clover: effects on ground beetles. Biol Agric Hortic 15:261–268

    Google Scholar 

  • Chai W, Udén P (1998) An alternative oven method combined with different detergent strengths in the analysis of neutral detergent fibre. Anim Feed Sci Technol 74:281–288. doi:10.1016/S0377-8401(98)00187-4

    Article  CAS  Google Scholar 

  • Crawley MJ (2002) Statistical computing. an introduction to data analysis using S-Plus. Wiley, UK

    Google Scholar 

  • De Bruyn L, Scheirs J, Verhagen R (2002) Nutrient stress, host plant quality and herbivore performance of a leaf-mining fly on grass. Oecologia 130:594–599. doi:10.1007/s00442-001-0840-1

    Article  Google Scholar 

  • Diawara MD, Hill NS, Wiseman BR, Isenhour DJ (1991) Panicle-stage resistance to Spodoptera frugiperda (Lepidoptera: Noctuidae) in converted Sorghum accessions. J Econ Entomol 84:337–344

    Google Scholar 

  • Finch S, Coaker TH (1969) A method for the continuous rearing of the cabbage root fly Erioischia brassicae (Bch.) and some observations on its biology. Bull Entomol Res 58:619–627

    Article  Google Scholar 

  • Finch S, Collier RH (2000) Host-plant selection by insects—a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102. doi:10.1023/A:1004058518179

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants—to grow or defend. Q Rev Biol 67:283–335. doi:10.1086/417659

    Article  Google Scholar 

  • Hochuli DF, Roberts FM (1996) Approximate digestibility of fibre for a graminivorous caterpillar. Entomol Exp Appl 81:15–20. doi:10.1007/BF00187833

    Article  Google Scholar 

  • Hochuli DF, Sanson GD, Roberts B (1993) Approximate digestibility of fibre for two locusts. Entomol Exp Appl 66:187–190. doi:10.1007/BF02382288

    Article  Google Scholar 

  • Hopkins RJ, Griffiths DW, Birch ANE, McKinlay RG, Hall JE (1993) Relationship between turnip root fly (Delia floralis) larval development and the sugar content of swede (Brassica napus ssp. rapifera) roots. Ann Appl Biol 122:405–415. doi:10.1111/j.1744-7348.1993.tb04043.x

    Article  Google Scholar 

  • Hopkins RJ, Birch ANE, Griffiths DW, Morrison IM, McKinlay RG (1995) Changes in the dry matter, sugar, plant fibre and lignin contents of swede, rape and kale roots in response to turnip root fly (Delia floralis) larval damage. J Sci Food Agric 69:321–328. doi:10.1002/jsfa.2740690308

    Article  CAS  Google Scholar 

  • Hunt DWA, Drury CF, Maw HEL (1992) Influence of nitrogen on the performance of colorado potato beetle (Coleoptera: Chrysomelidae) on tomato. Environ Entomol 21:817–821

    Google Scholar 

  • Langer V (1996) Insect-crop interactions in a diversified cropping system: parasitism by Aleochara bilineata and Trybliographa rapae of the cabbage root fly, Delia radicum, on cabbage in the presence of white clover. Entomol Exp Appl 80:365–374. doi:10.1007/BF00188029

    Article  Google Scholar 

  • Li H, Kuo J, Barbetti MJ, Sivasithamparam K (2007) Differences in the responses of stem tissues of spring-type Brassica napus cultivars with polygenic resistance and single dominant gene-based resistance to inoculation with Leptosphaeria maculans. Can J Bot 85:191–203. doi:10.1139/B06-159

    Article  Google Scholar 

  • Marazzi C, Städler E (2005) Influence of sulphur plant nutrition on oviposition and larval performance of the cabbage root fly. Agric For Entomol 7:277–282. doi:10.1111/j.1461-9555.2005.00272.x

    Article  Google Scholar 

  • Marazzi C, Patrian B, Städler E (2004) Secondary metabolites of the leaf surface affected by sulphur fertilisation and percieved by the cabbage root fly. Chemoecology 14:87–94. doi:10.1007/s00049-003-0265-x

    Article  CAS  Google Scholar 

  • Mert-Türk F (2002) Phytoalexins: defence or just a response to stress. J Cell Mol Biol 1:1–6

    Google Scholar 

  • Moerschbacher BM, Noll U, Gorrichon L, Reisener H (1990) Specific inhibition of lignification breaks hypersensitive resistance of wheat to wheat stem rust. Plant Physiol 93:465–470. doi:10.1104/pp.93.2.465

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389. doi:10.1146/annurev.py.30.090192.002101

    Article  CAS  Google Scholar 

  • Pedersen JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819. doi:10.2135/cropsci2004.0155

    Article  CAS  Google Scholar 

  • Price PW (1991) The plant vigour hypothesis and herbivore attack. Oikos 62:244–251. doi:10.2307/3545270

    Article  Google Scholar 

  • Rees M, Brown VK (1992) Interactions between invertebrate herbivores and plant competition. J Ecol 80:353–360. doi:10.2307/2261017

    Article  Google Scholar 

  • Rittinger PA, Biggs AR, Peirson DR (1987) Histochemistry of lignin and suberin deposition in boundary layers formed after wounding in various plant species and organs. Can J Bot 65:1886–1892

    Google Scholar 

  • Sarfraz M, Dosdall LM, Keddie BA (2007) Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 100:215–224. doi:10.1603/0022-0493(2007)100[215:ROSCBT]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Simpson SJ, Raubenheimer D (1995) The geometric analysis of feeding and nutrition: a user’s guide. J Insect Physiol 7:545–553. doi:10.1016/0022-1910(95)00006-G

    Article  Google Scholar 

  • Skovgård H, Päts P (1997) Reduction of stemborer damage by intercropping maize with cowpea. Agric Ecosyst Environ 62:13–19. doi:10.1016/S0167-8809(96)01114-0

    Article  Google Scholar 

  • Slansky F (1990) Insect nutritional ecology as a basis for studying host plant resistance. Fla Entomol 73:359–378. doi:10.2307/3495455

    Article  Google Scholar 

  • Stamp N, Bradfield M, Li S, Alexander B (2004) Effect on competition on plant allometry and defence. Am Midl Nat 151:50–64. doi:10.1674/0003-0031(2004)151[0050:EOCOPA]2.0.CO;2

    Article  Google Scholar 

  • Theunissen J, Booij CJH, Lotz LAP (1995) Effects of intercropping white cabbage with clovers on pest infestation and yield. Entomol Exp Appl 74:7–16. doi:10.1007/BF02383162

    Article  Google Scholar 

  • Tukahirwa EM, Coaker TH (1982) Effect of mixed cropping on some insect pests of Brassicas; Reduced Brevicoryne brassicae infestations and influences on epigeal predators and the disturbance of oviposition behaviour in Delia brassicae. Entomol Exp Appl 32:129–140

    Google Scholar 

  • Van der Putten WH (2003) Plant defence belowground and spatiotemporal processes in natural vegetation. Ecology 84:2269–2280. doi:10.1890/02-0284

    Article  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Google Scholar 

  • Wainhouse D, Cross DJ, Howell RS (1990) The role of lignin as a defence against the spruce bark beetle Dendroctonus micans: effect on larvae and adults. Oecologia 85:257–265. doi:10.1007/BF00319411

    Article  Google Scholar 

  • White TCR (1984) The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105. doi:10.1007/BF00379790

    Article  Google Scholar 

  • Widdicombe WD, Thelen KD (2002) Row width and plant density effect on corn forage hybrids. Agron J 94:326–330

    Google Scholar 

  • Willey RW (1979) Intercropping—its importance and research needs. Part 1. Competition and yield advantages. Field Crop Abstr 32:1–10

    Google Scholar 

  • Yildirim E, Guvenc I (2005) Intercropping based on cauliflower: more productive, profitable and highly sustainable. Eur J Agron 22:11–18. doi:10.1016/j.eja.2003.11.003

    Article  Google Scholar 

  • Zhang F, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248:305–312. doi:10.1023/A:1022352229863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and the Swedish University of Agricultural Sciences (SLU). Robert Glinwood, Department of Ecology (SLU), is thanked for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Björkman.

Additional information

Handling editor: Gimme Walter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björkman, M., Hopkins, R.J., Hambäck, P.A. et al. Effects of plant competition and herbivore density on the development of the turnip root fly (Delia floralis) in an intercropping system. Arthropod-Plant Interactions 3, 55–62 (2009). https://doi.org/10.1007/s11829-009-9055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-009-9055-x

Keywords

Navigation