Skip to main content
Log in

Empfehlungen zur computergestützten Aufzeichnung und Auswertung von Polygraphien

Recommendations for computer based recording and evaluation of polysomnography

  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Zusammenfassung

Die umfassende Untersuchung des Schlafes basiert auf der Polysomnographie. Die ursprüngliche Überwachung auf einem Analogmonitor und einem Papierschreiber wird zunehmend durch computergestützte Systeme abgelöst. Wer heute einen Polysomnographen beurteilen will benötigt zusätzliche Fachkenntnisse, die hier in ihren Grundzügen vermittelt werden. Grundlagen der Biosignalverarbeitung bezogen auf die im Schlaflabor gemessenen Größen werden dargestellt. Eine digitale Polysomnographie erfüllt mehrere Funktionen im Schlaflabor. Diese sind die Funktion des Papierschreibers, des Dokumentationsblattes, der automatischen Schlafauswertung und der automatischen kardiorespiratorischen Auswertung. Ein Konsens mit minimalen Anforderungen an die zeitliche und amplitudenbezogene Auflösung der Signale unter Berücksichtigung internationaler Standards wird vorgestellt. Es werden auch die Anforderungen an die automatische Auswertung des Schlafes, der kardiorespiratorischen Funktion und der Beinbewegungen benannt und die minimal notwendigen Parameter aufgeführt. Im Vergleich zur digitalen Bildverarbeitung können die aufgeführten Empfehlungen mit einem moderaten Aufwand bezogen auf die Gerätetechnik verwirklicht werden.

Summary

Polysomnography is the basis of sleep investigation. Former techniques with analogue monitors and chart writers are nowadays replaced by digital systems. To judge on a modern polysomnographic system requires additional knowledge of which basics are provided in this paper. Therefore basics of biosignal analysis necessary for sleep are given here. A digital polysomnography serves several functions in a sleep laboratory. These are: a chart writer, a documentation of events, an automatic sleep analysis and an automatic analysis of cardiorespiratory signals. A consensus with minimal requirements on time and amplitude resolutions is given taking international standards into consideration. Requirements for an automatic analysis of sleep, of cardiorespiratory function, and of leg movements are named and the minimum set of parameters is defined. Comparing these recommendations with digital image processing the desired needs on technology are moderate and can be realised with adequate efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Achermann P, Borbély AA: Dynamics of EEG slow wave activity during physiological sleep and after administration of benzodiazepine hypnoptics. Human Neurobiol 6: 203–210, 1987.

    CAS  Google Scholar 

  2. Agnew Jr HW: Integrator analysis of the sleep electroencephalogram. Electroenceph. Clin Neurophysiol 34:391–397, 1973.

    Article  PubMed  Google Scholar 

  3. American Electroencephalographic Society. Guidelines for Polygraphic Assessment of Sleep-Related Disorders (Polysomnography). J Clin Neurophysiol 9: 88–96, 1992.

    Article  Google Scholar 

  4. American Sleep Disorders Association Standards of Practice Committee: Practice Parameters for the Indications for Polysomnography and Related Procedures. Sleep 20: 406–422, 1997.

    Google Scholar 

  5. Bailey JJ, Berson AS, Garson A, Horan LG, MacFarlane PW, Mortara DW, Zywietz C: Recommendations for Standardization and Specifications in Automated Electrocardiography: Bandwith and Digital Signal Processing. Circulation 81: 730–739, 1990.

    CAS  PubMed  Google Scholar 

  6. Bankman IN, Sigillito VG, Wise RA, Smith PL: Feature-based detection of the K-complex wave in the human electroencephalogram using Neural Networks. IEEE Trans Biomed Engin 39: 1305–1310, 1993.

    Article  Google Scholar 

  7. Barlow J, Creutzfeldt OD, Michael D, Houchin J, Epelbaum H: Automatic adaptive segmentation of clinical EEG. Electrocenceph Clin Neurophysiol 51: 512–525, 1981.

    Article  CAS  Google Scholar 

  8. Borbély A: A two-process model of sleep regulation. Hum Neurobiol 1: 195–204, 1982.

    PubMed  Google Scholar 

  9. Bremer G, Smith JR, Karacan I: Automatic detection of the K-complex in sleep electroencephalograms. IEEE Trans Biomed Engin 17:314–323, 1970.

    CAS  Google Scholar 

  10. Carskadon M.A., Rechtschaffen A.: Monitoring and staging human sleep. In: Kryger MH, Roth Th, Dement WC (eds): Principles and Practice of Sleep Medicine. Saunders, Philadelphia, pp 665–695, 1989.

    Google Scholar 

  11. Chang TG, Smith JR, Principe JC: An expert system for multichannel sleep EEG/EOG signal analysis. Biomed Sci Instrum 24: 19–25, 1988.

    CAS  PubMed  Google Scholar 

  12. Creutzfeldt OD, Bodenstein G, Barlow JS: Computerized EEG pattern classification by adaptive segmentation and probability density function classification—Clinical evaluation. Electroenceph Clin Neurophysiol 60: 373–393, 1985.

    Article  CAS  PubMed  Google Scholar 

  13. Czeisler CA et al: Glossary of standardised terminology for sleep-biological rhythm research. Sleep 2: 287–288, 1980.

    Google Scholar 

  14. Da Rosa AC, Kemp B, Lopes Da Silva FH, Kamphuisen HAC: A model-based detector of vertex waves and K-complexes in sleep electroencephalogram. Electroenceph Clin Neurophysiol 78: 71–79, 1991.

    Article  PubMed  Google Scholar 

  15. Da Rosa AC, Paiva T: Automatic Detection of K-Complexes: Validation in Normals and Dysthymic Patients Sleep 16: 239–248, 1993.

    PubMed  Google Scholar 

  16. De Olivera PG, Principe JC, Cruz AN, Tome AM: HIDRA: a hierarchical instrument for distributed real-time analysis of biological signals. IEEE Trans Biomed Engin 34: 921–927, 1987.

    Google Scholar 

  17. Dement WC, Kleitman N: The relation of eye movements during sleep to dream activity: an objective method for study of dreaming. J Exp Psychol 53: 339–346, 1957.

    Article  CAS  PubMed  Google Scholar 

  18. Dirlich G, Friedrich-Freksa C, Schulz H: A time-dependent model of sleep EEG. In: WP Koella and P Levin (eds): Sleep. Physiology, Biochemistry, Psychology, Pharmacology, Clinical Implications. Karger, Basel, pp 253–257, 1973.

    Google Scholar 

  19. Ferri R, Ferri P, Colognola RM, Petrella MA, Musumeci SA, Bergonzi P: Comparison between the results of an automatic and a visual scoring of sleep EEG recordings. Sleep 12: 354–362, 1989.

    CAS  PubMed  Google Scholar 

  20. Frost Jr JD: An automatic sleep analyser. Electroenceph clin Neurophysiol 29: 88–92, 1970.

    Article  PubMed  Google Scholar 

  21. Gaillard J-M, Tissot R: Principles of automatic analysis of sleep records with a hybrid system. Comp Biomed Res 6: 1–13, 1973.

    Article  CAS  Google Scholar 

  22. Gasser T, Möcks J: Graphical representation of multi-dimensional EEG data and classificatory aspects. Electroenceph Clin Neurophysiol 55: 609–612, 1983.

    Article  CAS  PubMed  Google Scholar 

  23. Gath I, Bar-On E: Computerized method for scoring of polygraphic sleep recordings. Comput Programs Biomed 11: 217–223, 1980.

    Article  CAS  PubMed  Google Scholar 

  24. Haustein W, Pilcher J, Klink J, Schulz H: Automatic analysis overcomes limitations of sleep stage scoring. Electroenceph Clin Neurophysiol 64: 364–374, 1986.

    Article  CAS  PubMed  Google Scholar 

  25. Heinze H-J, Clarenbach P, Elger CE, Flemming I, Hinrichs H, Kubicki SK, Lücking C-H, Noachter S, Zschocke S: Empfehlungen der Deutschen Gesellschaft für Klinische Neurophysiologie (Deutsche EEG-Gesellschaft) für Langzeitableitungen. Z EEG-EMG 25: 219–225, 1994.

    Google Scholar 

  26. Hoffmann RF, Moffitt AR, Shearer JC, Sussman PS, Wells RB: Conceptual and methodological considerations towards the development of computer-controlled research on the electrophysiology of sleep. Waking Sleeping 3: 1–16, 1979.

    CAS  PubMed  Google Scholar 

  27. Jansen BH: Aftificial Neural Nets for K-complex detection. IEEE Engineering in Medicine and Biology 50–52, September 1990.

  28. Jobert M, Escola H, Jähnig P, Schulz H: A comparison between visual and computer assessment of sleep onset latency and their application in a pharmacological sleep study. Sleep 16: 233–238, 1993.

    CAS  PubMed  Google Scholar 

  29. Jobert M, Poiseau E, Jähnig P, Schulz H, Kubicki S: Pattern recognition by matched filtering: An analysis of sleep spindle and K-complex density under the influence of Lormetazepam and Zopiclone. Neuropsychobiology 26: 100–107, 1992.

    Article  CAS  PubMed  Google Scholar 

  30. Jobert M, Schulz H, Jähnig P, Tismer C, Bes F, Escola H: A computerised method for detecting episodes of wakefulness during sleep based on the alpha slow-wave index (ASI). Sleep 17: 37–46, 1994.

    CAS  PubMed  Google Scholar 

  31. Jobert M, Tismer C, Poiseau E, Schulz H: Wavelets, a new tool in sleep biosignal analysis. J Sleep Research 3: 223–232, 1994.

    Article  Google Scholar 

  32. Johnson LC: The EEG during sleep as viewed by a computer. EEG Informatics. A didactic review of methods and applications of EEG data processing. A. Remond (ed): Elsevier/North-Holland Biomedical Press, Amsterdam, pp 385–406, 1977.

    Google Scholar 

  33. Kemp B, Värri A, DaRosa A, Nielsen KD, Gade J: A simple format for exchange of digitized polygraphic recordings. Electroenceph. Clin Neurophysiol 82: 391–393, 1992.

    Article  CAS  PubMed  Google Scholar 

  34. Kubicki S, Herrmann WM, Höller L: Critical comments on the rules by Rechtschaffen and Kales concerning the visual evaluation of EEG sleep records. In: Herrmann, WM (ed.): Electroencephalography in Drug Research, Fischer, Stuttgart, pp 387–403, 1982.

    Google Scholar 

  35. Larsen LE, Walter DO: On automatic methods of sleep staging by EEG spectra. Electroenceph Clin Neurophysiol 28: 459–467, 1970.

    Article  CAS  PubMed  Google Scholar 

  36. Lessard CS, Paschall Jr RC: A system for quantifying EEG slow wave activity. Electroenceph Clin Neurophysiol 29: 516–520, 1970.

    Article  CAS  PubMed  Google Scholar 

  37. Loomis AL, Harvey EN, Hobart GA: Cerebral States During Sleep, as studied by Human Brain Potentials. J Exp Psychol 21: 127–144, 1937.

    Article  Google Scholar 

  38. Nuwer MR, Emerson RG, Frost JD, Gotman J, Ives JR, Jacobs E., Lagerlund TD, Oken BS, Sgro JA, Shipton HW, Weiner RD: Guidelines for Recording Clinical EEG on Digital Media. American Electroencephalographic Society, 1991.

  39. Penzel T, Brandenburg U, Conradt R, Kesper K, Peter JH: Erfassung und Auswertung von Biosignalen des Schlafes. Somnologie 1: 46–54, 1997.

    Google Scholar 

  40. Penzel T, Brandenburg U, Peter JH: Langzeitregistrierung und Zeitreihenanalyse in der Inneren Medizin. Internist 38: 734–741, 1997.

    Article  CAS  PubMed  Google Scholar 

  41. Penzel T, Brandenburg U: Diagnostische Verfahren und Standards in der Schlafmedizin. Internist 37: 442–453, 1996.

    CAS  PubMed  Google Scholar 

  42. Penzel T, Hajak G, Hoffmann RM, Lund R, Podszus T, Pollmächer T., Schäfer T., Schulz H, Sonnenschein W, Spieweg I: Empfehlungen zur Durchführung und Auswertung polygraphischer Ableitungen im diagnostischen Schlaflabor. Z EEG EMG 24: 65–70, 1993.

    Google Scholar 

  43. Praetorius HM, Bodenstein G, Creutzfeldt OD: Adaptive segmentation of EEG records: A new approach to automatic analysis. Electroenceph Clin Neurophysiol 42: 84–94, 1977.

    Article  CAS  PubMed  Google Scholar 

  44. Rechtschaffen A, Kales A: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Brain Information Service/Brain Research Institute. University of California, Los Angeles, 1968.

    Google Scholar 

  45. Smith JR: Automated Analysis of Sleep EEG Data. In: Lopes da Silva FH, Storm van Leeuwen W, Remond A. (eds): Handbook of Electroencephalography and Clinical Neurophysiology (Revised series). Elsevier, pp 131–147, 1986.

  46. Todorova A, Hofmann HC, Dimpfel W: A New Frequency Based Automatic Sleep Analysis—Description of the Healthy Sleep. Eur J Med Res 2: 187–197, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Penzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penzel, T., Brandenburg, U., Fischer, J. et al. Empfehlungen zur computergestützten Aufzeichnung und Auswertung von Polygraphien. Somnologie 2, 42–48 (1998). https://doi.org/10.1007/s11818-998-0007-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-998-0007-y

Schlüsselwörter

Key-words

Navigation