Skip to main content
Log in

Principal component structure of wake-sleep transition

Quantitative description in multiple sleep latency tests

Hauptkomponentenstruktur des Wach-Schlaf-Übergangs

Quantitative Beschreibung im Multiple-Schlaf-Latenz-Test

  • Original Contribution
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Abstract

Question of the study

The multiple sleep latency test (MSLT) uses electroencephalograph (EEG) recordings obtained throughout the whole interval of each of several sleep attempts but it scores time to the discrete onset of sleep rather than quantify the degree of transition from the wake to sleep state. The present study employed principal component analysis of EEG spectra to examine the feasibility of quantification and prediction of a gradual transition from wakefulness to sleep in MSLT.

Subjects and methods

The present analysis was based on polysomnograph recordings obtained during 24 hour MSLTs in 9 sleep-deprived, 9 sleep-restricted and 14 sleep-unrestricted subjects.

Results

It was demonstrated that wake and sleep EEG spectra can be reduced to an invariant structure consisting of three largest principal components and these components are strongly associated with sleep latency during 24 hour MSLTs.

Conclusions

The features of the principal component structure of EEG spectra documented in the present study suggest the possibility to enrich the traditional scoring of the discrete event of sleep onset by a theoretically meaningful, parsimonious, and quantitative description of a gradual transition from one state or substate of a sleep-wake continuum to another.

Zusammenfassung

Fragestellung

Der Multiple-Schlaf-Latenz-Test (MSLT) verwendet elektroenzephalographische (EEG-)Aufzeichnungen, die so ausgewertet werden, dass für jedes Intervall von mehreren Schlafversuchen die Zeit bis zum Schlafanfang berechnet wird, anstatt den Grad des Übergangs vom Wach- zum Schlafzustand zu quantifizieren. Die vorgestellte Studie beinhaltet eine Hauptkomponentenanalyse des EEG-Spektrums mit dem Ziel, die Möglichkeit einer Quantifizierung und Prognose des allmählichen Übergangs vom Wachen zum Schlaf im MSLT zu untersuchen.

Material und Methoden

Die vorgestellte Analyse basiert auf polysomnographischen Aufzeichnungen, die während eines 24-stündigen MSLT bei 9 Probanden mit Schlafentzug, 9 Probanden mit Schlafbeschränkung und 14 Probanden ohne Beschränkung erhalten worden sind.

Ergebnisse

Folgendes wurde festgestellt: 1) Wach- und Schlafspektren des EEG können zu einer invarianten Struktur, die aus den 3 größten Hauptkomponenten besteht, reduziert werden. 2) Diese Komponenten sind stark mit der Schlaflatenz während des 24-stündigen MSLT verbunden.

Schlussfolgerung

Die Merkmale der Hauptkomponentenstruktur des EEG-Spektrums, die hier dokumentiert wurden, legen die Möglichkeit nahe, die traditionelle Berechnung des genauen Einschlafzeitpunkts durch eine theoretisch sinnvolle, sparsame und quantitative Beschreibung des allmählichen Übergangs von einem Zustand oder Stadium zu einem anderen des Schlaf-Wach-Kontinuums zu ergänzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achermann P, Borbely AA (1994) Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process. Biol Cybern 71(2):115–121

    Article  CAS  PubMed  Google Scholar 

  2. Åkerstedt T, Gillberg M (1990) Subjective and objective sleepiness in the active individual. Int J Neurosci 52:29–37

    Article  PubMed  Google Scholar 

  3. Arand D, Bonnet M, Hurwitz T et al (2005) The clinical use of the MSLT and MWT. Sleep 28(1):123–144

    PubMed  Google Scholar 

  4. Borbély AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  Google Scholar 

  5. Borbély AA, Achermann P (2005) Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier Saunders, Philadelphia, pp 405–417

  6. Boutrel B, Koob GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27(6):1181–1194

    PubMed  Google Scholar 

  7. Cajochen C, Khalsa SB, Wyatt JK et al (1999) EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss. Am J Physiol 277:R640–R649

    CAS  PubMed  Google Scholar 

  8. Carskadon MA, Dement WC, Mitler MM et al (1976) Self-reports versus sleep laboratory findings in 122 drug-free subjects with complaints of chronic insomnia. Am J Psychiatry 133(12):1382–1388

    Article  CAS  PubMed  Google Scholar 

  9. Carskadon MA, Dement WC, Mitler MM et al (1986) Guidelines for the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep 9(4):519–524

    CAS  PubMed  Google Scholar 

  10. Daan S, Beersma DG, Borbély AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246:R161–R178

    CAS  PubMed  Google Scholar 

  11. Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci 13(3):1065–1079

    CAS  PubMed  Google Scholar 

  12. Krystal AD, Edinger JD, Wohlgemuth WK, Marsh GR (2002) NREM sleep EEG frequency spectral correlates of sleep complaints in primary insomnia subtypes. Sleep 25:630–640

    PubMed  Google Scholar 

  13. Makeig S, Jung TP (1995) Changes in alertness are a principal component of the variance in the EEG spectrum. Neuroreport 7:213–216

    Article  CAS  PubMed  Google Scholar 

  14. Morisson F, Decary A, Petit D et al (2001) Daytime sleepiness and EEG spectral analysis in apneic patients before and after treatment with continuous positive airway pressure. Chest 119:45–52

    Article  CAS  PubMed  Google Scholar 

  15. Perlis ML, Kehr EL, Smith MT et al (2001) Temporal and stagewise distribution of high frequency EEG activity in patients with primary and secondary insomnia and in good sleeper controls. J Sleep Res 10(2):93–104

    Article  CAS  PubMed  Google Scholar 

  16. Putilov AA (1995) The timing of sleep modelling: Circadian modulation of the homeostatic process. Biol Rhythm Res 26:1–19

    Article  Google Scholar 

  17. Putilov AA (2011) Prospects of using electroencephalographic signatures of the chronoregulatory processes for meaningful, parsimonious and quantitative description of the sleep-wake sub-states. Biol Rhythm Res 42 (in press)

  18. Putilov AA, Donskaya OG, Verevkin EG et al (2009) Chronotype, somnotype and trototype as the predictors of the time course of subjective and objective indexes of sleepiness in sleep deprived subjects. In: Fulke P, Vaughan S (eds) Sleep deprivation: causes, effects and treatment. Nova Science, New York, pp 95–142

  19. Putilov AA, Donskaya OG, Verevkin EG, Shtark MB (2009) Structuring the inter-individual variation in waking EEG can help to discriminate between the objective markers of sleep debt and sleep pressure. Somnologie 13(2):72–88

    Article  Google Scholar 

  20. Putilov AA, Donskaya OG, Verevkin EG, Putilov DA (2010) Associations of waking EEG structure with chronotype and trototype of 130 sleep deprived individuals. Biol Rhythm Res 41(2):113–136

    Article  Google Scholar 

  21. Rechtschaffen A, Kales A (eds) (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. University of California, Los Angeles

Download references

Acknowledgments

This study was supported by the grant numbers 07-06-00263а and 10-06-00114-а from the Russian Foundation for Basic Research and by grant number 06-06-00375a from the Russian Foundation for Humanities. Dr. Vladislav Palchikov, Dr. Konstantin Danilenko, Dr. Evgeniy Verevkin, Olga Donskaya, Dmitriy Putilov and Dmitriy Zolotarev (Heffele) are thanked for their assistance in polysomnograph recordings and analyses. The author also wishes to thank the reviewers for valuable suggestions which resulted in improvement to the original manuscript.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.A. Putilov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putilov, A. Principal component structure of wake-sleep transition. Somnologie 14, 234–243 (2010). https://doi.org/10.1007/s11818-010-0487-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-010-0487-4

Keywords

Schlüsselwörter

Navigation