Skip to main content
Log in

A critical review of existing mathematical models for alertness

Eine kritische Übersicht mathematischer Müdigkeitsmodelle

  • REVIEW
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Zusammenfassung

Der Artikel gibt eine Übersicht über biomathematische Modelle für Müdigkeit und Leistungsfähigkeit des Menschen mit dem Ziel, offene Fragen und Verbesserungsmöglichkeiten zu identifizieren.

Fast alle Müdigkeits- und Alertnessmodelle basieren auf dem Zwei-Prozess-Modell der Schlafregulation. Sie stellen eine mathematische Formulierung des Zwei- Prozess-Modells dar, die auf verschiedene Parameter wie Alertness, Müdigkeit, Schläfrigkeit, Leistungsfähigkeit und Unfallrisiko zielt. Eines der betrachteten Modelle ist ausschließlich empirisch ohne die Regulation des Schlafs einzubeziehen.

Unterschiede zwischen den Modellen ergeben sich aus der Art der Daten, die in das Modell eingegangen sind. Diese Daten bestimmen die möglichen Anwendungsgebiete der Modelle von der Luftfahrt über Auto- und Lkw-Fahrer zu industrieller Schichtarbeit.

Zudem können Müdigkeitsmodelle zur Ausbildung eingesetzt werden. Sie können die Folgen von unregelmäßiger Arbeitszeit anschaulich machen. Ein anderer Zweck der Modelle ist, wissenschaftliche Hypothesen zu generieren, die durch Experimente überprüft werden können.

Wichtige Gesichtspunkte zur weiteren Verbesserung der Modelle umfassen die Berücksichtigung kumulativer Müdigkeitseffekte, individueller Unterschiede, externer Faktoren wie Lichtexposition sowie die Berücksichtigung von Müdigkeitseffekten, die durch Tätigkeiten induziert werden.

Summary

Existing biomathematical models of human fatigue and performance are reviewed with the aim of identifying open questions and ways of improving models.

Most fatigue and alertness models are based on the twoprocess model of sleep regulation. They present a mathematical formulation of the two-process model targeted on different metrics including alertness, fatigue, sleepiness, performance measures and accident risk. One of the reviewed fatigue models is completely empirical without reference to sleep regulation.

Differences between the models result from the specific data set on which a model is based. These data sets determine the possible application areas for the models ranging from airline operations, car and truck drivers to industrial shift work.

It is generally accepted that fatigue models are useful also for educating people about fatigue in non-standard work situations and for generating scientific hypotheses that can be tested by experiments.

Important points for the improvement of models include the consideration of cumulative fatigue, interindividual differences, effects of external factors such as light on fatigue, and task-related effects. Very few models consider the task-related fatiguing effect of different activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Achermann P (2004) The two-process model of sleep regulation revisited. Aviat Space Environ Med 75 (3, Suppl.):A37–A43

    PubMed  Google Scholar 

  2. Achermann P,Borbély AA (1996) Simulations of circadian system and vigilance during space missions. In: Bonting SL (ed) Advances in Space Biology and Medicine. JAI, Greenwich, CT, pp 201–212

  3. Akerstedt T, Folkard S (1996) Predicting duration of sleep from the threeprocess model of alertness regulation. Occup Environ Med 53:136–141

    Article  PubMed  CAS  Google Scholar 

  4. Akerstedt T, Folkard S, Portin CD (2004) Predictions from the threeprocess model of alertness. Aviat Space Environ Med 75 (3, Suppl.):A75–A83

    PubMed  Google Scholar 

  5. Belyavin AJ, Spencer MB (2004) Modeling Performance and Alertness: The QinetiQ Approach. Aviat Space Environ Med 75 (3, Suppl.):A93–A103

    PubMed  Google Scholar 

  6. Daan S, Beersma DGM, Borbély AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246:R161–R183

    PubMed  CAS  Google Scholar 

  7. Dinges DF (2004) Critical research issues in development of biomathematical models of fatigue and performance. Aviat Space Environ Med 75 (3, Suppl.):A181–A191

    PubMed  Google Scholar 

  8. Dinges DF,Powell JW (1985) Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav Res Methods Instr Comp 17:652–655

    Google Scholar 

  9. Eddy DR, Hursh SR (2001) Fatigue Avoidance Scheduling Tool (FAST). AFRL-HE-BR-TR-2001–0140, SBIR Phase I Final Report. Brooks AFB, TX

  10. Fletcher A, Dawson D (2001) A quantitative model of work-related fatigue: empirical evaluations. Ergonomics 44:475–488

    Article  PubMed  CAS  Google Scholar 

  11. Folkard S, Akerstedt T, Macdonald I (1999) Beyond the three-process model of alertness: estimating phase, time on shift and successive night effects. J Biol Rhythms 14:577–587

    Article  PubMed  CAS  Google Scholar 

  12. Folkard S, Akerstedt T, Macdonald I (2000) Refinement of the three-process model of alertness to account for trend in accident risk. In: Hornberger S, Knauth P, Costa G, Folkard S (ed) Shiftwork in the 21st Century. Peter Lang, Frankfurt, pp 49–54

  13. Folkard S, Lombardi DA, Tucker PT (2005) Shiftwork: safety, sleepiness and sleep. Ind Health 43(1):20–23

    Article  PubMed  Google Scholar 

  14. Hursh SR (1998) Modeling sleep and performance within the Integrated Unit Simulation System (IUSS). US Army Soldier Systems Command, Technical Report TR-98/026L, Natick, MA

  15. Hursh SR, Redmond DP, Johnson ML, Thorne DR, Belenky G, Balkin TJ, Storm WF, Miller JC, Eddy DR (2004) Fatigue models for applied research in warfighting. Aviat Space Environ Med 75 (3, Suppl.):A44–A53

    PubMed  Google Scholar 

  16. Jewett ME, Kronauer R (1999) Interactive mathematical models of subjective alertness and cognitive throughput in humans. J Biol Rhythms 14:588–597

    Article  PubMed  CAS  Google Scholar 

  17. Kronauer RE, Forger DB, Jewett ME (1999) Quantifying human circadian pacemaker response to brief, extended, and repeated light stimuli over the photoptic range. J Biol Rhythms 14:500–518

    Article  PubMed  CAS  Google Scholar 

  18. Mallis MM, Mejdal S, Nguyen T, Dinges DF (2004) Summary of the key features of seven biomathematical models of human fatigue and performance. Aviat Space Environ Med 75 (3, Suppl.):A4–A14

    PubMed  Google Scholar 

  19. Moore-Ede M, Heitmann A, Guttkuhn R, Trutschel U, Aguirre A, Croke D (2004) Circadian alertness simulator for fatigue assessment in transportation: application to reduce frequency and severity of truck accidents. Aviat Space Environ Med 75 (3, Suppl.):A107–A118

    PubMed  Google Scholar 

  20. Reifman J (2004) Alternative methods for modelling fatigue and performance. Aviat Space Environ Med 75 (3, Suppl.):A173–A180

    PubMed  Google Scholar 

  21. Richter S, Marsalek K, Glatz C, Gundel A (2005) Task-dependent differences in subjective fatigue scores. J Sleep Res 14:393–400

    Article  PubMed  CAS  Google Scholar 

  22. Roach GD, Fletcher A, Dawson D (2004) A model to predict work-related fatigue based on hours of work. Aviat Space Environ Med 75 (3, Suppl.):A61–A69

    PubMed  Google Scholar 

  23. Smith L, Folkard S, Poole C (1994) Increased injuries on night shift. Lancet 344:1137–1139

    Article  PubMed  CAS  Google Scholar 

  24. Spencer M, Gundel A (1998) A PCbased program for the assessment of duty schedules in civil aviation: the way forward. DERA/CHS/PP5/CR/980069/ 1.0

  25. Spencer MB, Wilson AL, Bunting AJ (1998) The CHS alertness model and the prediction of performance. (UC) DERA/CHS/PPD/CR980191, Farnborough, UK

  26. Van Dongen HPA (2004) Comparison of mathematical model predictions to experimental data of fatigue and performance. Aviat Space Environ Med 75 (3, Suppl.):A15–A36

    PubMed  Google Scholar 

  27. Van Dongen HPA (2004) Comparison of model predictions to experimental data: rectifying false impressions. Aviat Space Environ Med 75 (3, Suppl.):A122–A124

    PubMed  Google Scholar 

  28. Van Dongen HPA, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: Dose-response effects of neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26:117–126

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gundel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gundel, A., Marsalek, K. & ten Thoren, C. A critical review of existing mathematical models for alertness. Somnologie 11, 148–156 (2007). https://doi.org/10.1007/s11818-007-0312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-007-0312-x

Schlüsselwörter

Key words

Navigation